• Title/Summary/Keyword: Approximate Riemann Solver

Search Result 48, Processing Time 0.021 seconds

DEVELOPMENT OF 2D DAM BREAK FLOW ANALYSIS MODEL USING FRACTIONAL STEP METHOD

  • Kim, Dae-hong;Kim, Woo-gu;Chae, Hyo-sok;Park, Sang-geun
    • Water Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.23-30
    • /
    • 2002
  • A numerical model for the solution of two-dimensional dam break problems using fractional step method is developed on unstructured grid. The model is based on second-order Weighted Averaged Flux(WAF) scheme with HLLC approximate Riemann solver. To control the nonphysical oscillations associated with second-order accuracy, TVD scheme with SUPERBEE limiter is used. The developed model is verified by comparing the computational solutions with analytic solutions in idealized test cases. Very good agreements have been achieved in the verifications.

  • PDF

An Application of the Multi-slope MUSCL to the Shallow Water Equations (천수방정식에 대한 다중 경사 MUSCL의 적용)

  • Hwang, Seung-Yong;Lee, Sam-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.10
    • /
    • pp.819-830
    • /
    • 2011
  • The multi-slope MUSCL, proposed by T. Buffard and S. Clain, determines slopes of conserved variables at each edge of a cell in the linear reconstructions of data. In this study, the second order accurate numerical model was developed according to the multi-slope MUSCL to solve the shallow water equations on the unstructured grids. The HLLL scheme of approximate Riemann solvers was used to calculate fluxes. For the review of the applicability of the developed model, the results of the model were compared to the 'isolated building test' and the 'model city flooding experiment' conducted as part of the IMPACT (Investigation of extreMe flood Processes And unCerTainty) project in Europe. There were limitations to predict abrupt rising of water depths by the resistance of model buildings and water depths at the specific locations among the buildings. But they were identified as the same problems also revealed in results of the other models to the same experiment. On the more refined meshes to the 'model city flooding experiment' simulated results showed good agreement with measurements. It was verified that the developed model simulated well the complex phenomena such as a dam-break problem and the urban inundation by flash floods.

Numerical Simulation of Dam-Break Problem with Cut-cell Method (분할격자를 이용한 댐붕괴파의 수치해석)

  • Kim, Hyung-Jun;Yoo, Je-Seon;Lee, Seung-Oh;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1752-1756
    • /
    • 2008
  • A simple, accurate and efficient mesh generation technique, the cut-cell method, is able to represent an arbitrarily complex geometry. Both structured and unstructured grid meshes are used in this method. First, the numerical domain is constructed with regular Cartesian grids as a background grid and then the solid boundaries or bodies are cut out of the background Cartesian grids. As a result, some boundary cells can be contained two numerical conditions such as the flow and solid conditions, where the special treatment is needed to simulate such physical characteristics. The HLLC approximate Riemann solver, a Godunov-type finite volume method, is employed to discretize the advection terms in the governing equations. Also, the TVD-WAF method is applied on the Cartesian cut-cell grids to stabilize numerical results. Present method is validated for the rectangular dam break problems. Initially, a conventional grid is constructed with the Cartesian regular mesh only and then applied to the dam-break flow simulation. As a comparative simulation, a cut-cell grids are applied to represent the flow domain rotated with arbitrary angles. Numerical results from this study are compared with the results from the case of the Cartesian regular mesh only. A good agreement is achieved with other numerical results presented in the literature.

  • PDF

Convergence Characteristics of Upwind Method for Modified Artificial Compressibility Method

  • Lee, Hyung-Ro;Lee, Seung-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.318-330
    • /
    • 2011
  • This paper investigates the convergence characteristics of the modified artificial compressibility method proposed by Turkel. In particular, a focus is mode on the convergence characteristics due to variation of the preconditioning factor (${\alpha}_u$) and the artificial compressibility (${\beta}$) in conjunction with an upwind method. For the investigations, a code using the modified artificial compressibility is developed. The code solves the axisymmetric incompressible Reynolds averaged Navier-Stokes equations. The cell-centered finite volume method is used in conjunction with Roe's approximate Riemann solver for the inviscid flux, and the central difference discretization is used for the viscous flux. Time marching is accomplished by the approximated factorization-alternate direction implicit method. In addition, Menter's k-${\omega}$ shear stress transport turbulence model is adopted for analysis of turbulent flows. Inviscid, laminar, and turbulent flows are solved to investigate the accuracy of solutions and convergence behavior in the modified artificial compressibility method. The possible reason for loss of robustness of the modified artificial compressibility method with ${\alpha}_u$ >1.0 is given.

Numerical Analysis of Nonlinear Longitudinal Combustion Instability in LRE Using Pressure-Sensitive Time-Lag Hypothesis (시간지연 모델을 이용한 액체로켓엔진의 축방향 비선형 연소불안정 해석)

  • Kim Seong-Ku;Choi Hwan Seok;Park Tae Seon;Kim Yong-Mo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.281-287
    • /
    • 2005
  • Nonlinear behaviors such as steep-fronted wave motions and a finite amplitude limit cycle often accompanying combustion instabilities have been numerically investigated using a characteristic-based approximate Riemann solver and the well-known ${\eta}-{\tau}$ model. A resonant pipe initially subjected to a harmonic pressure disturbance described the natural steepening process that leads to a shocked N-wave. For a linearly unstable regime, pressure oscillations reach a limit cycle which is independent of the characteristics of the initial disturbances and depends only on combustion parameters and operating conditions. For the 1.5 MW gas generator under development in KARI, the numerical results show good agreement with experimental data from hot-firing tests.

  • PDF

Flow Visualization and Unstructured Grid Computation of Flow over a High-Speed Projectile (고속탄자 유동의 가시화 실험 및 비정렬격자 계산)

  • 이상길;최서원;강준구;임홍규;백영호;김두연;강호철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.12-20
    • /
    • 1998
  • Exter ballistics of a typical high-speed projectile is studied through a flow-visualization experiment and an unstructured grid Navier-Srokes computation. Experiment produced a schlieren photograph that adequately shows the characteristic features of this complex flow, namely two kinds of oblique cone shocks and turbulent wake developing into the downstream. A hybrid scheme of finite volume-element method is used to simulate the compressible Reynolds-Averaged Navier-Stok- es solution on unstructured grids. Osher's approximate Riemann solver is used to discretize the cinvection term. Higher-order spatial accuracy is obtained by MUSCL extension and van Albada ty- pe flux limiter is used to stabilize the numerical oscillation near the solution discontinuity. Accurate Gakerkin method is used to discretize the viscous term. Explict fourth-order Runge-Kutta method is used for the time-stepping, which simplifies the application of MUSCL extension. A two-layer k-$\varepsilon$ turbulence model is used to simulate the turbulent wakes accurately. Axisymmetric folw and two-dimensional flow with an angle of attack have been computed. Grid-dependency is also checked by carrying out the computation with doubled meshes. 2-D calculation shows that effect of angle of attack on the flow field is negligible. Axi-symmetric results of the computation agrees well with the flow visualization. Primary oblique shock is represented within 2-3 meshes in numerical results, and the varicose mode of the vortex shedding is clearly captured in the turbulent wake region.

  • PDF

Numerical Study of Rocket Exhaust Plume with Equilibrium Chemical Reaction and Thermal Radiation (평형화학반응과 복사열전달을 고려한 로켓 플룸 유동 해석)

  • Shin J.-R.;Choi J.-Y.;Choi H.-S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.146-153
    • /
    • 2004
  • The Numerical study has been carried out to investigate the effects of chemical reaction and thermal radiation on the rocket plume flow-field at various altitudes. The theoretical formulation is based on the Navier-Stokes equations for compressible flows along with the infinitely fast chemistry and thermal radiation. The governing equations were solved by a finite volume fully-implicit TVD(Total Variation Diminishing) code which uses Roe's approximate Riemann solver and MUSCL(Monotone Upstream-centered Schemes for Conservation Laws) scheme. LU-SGS (Lower Upper Symmetric Gauss Seidel) method is used for the implicit solution strategy. An equilibrium chemistry module for hydrocarbon mixture with detailed thermo-chemical properties and a thermal radiation module for optically thin media were incorporated with the fluid dynamics code. In this study, kerosene-fueled rocket was assumed operating at O/F ratio of 2.34 with a nozzle expansion ratio of 6.14. Flight conditions considered were Mach number zero at ground level, Mach number 1.16 at altitude 5.06km and Mach number 2.9 at altitude 17.34km. Numerical results gave the understandings on the detailed plume structures at different altitude conditions. The diffusive effect of the thermal radiation on temperature field and the effect of chemical recombination during the expansion process could be also understood. By comparing the results from frozen flow and infinitely fast chemistry assumptions, the excess temperature of the exhaust gas resulting from the chemical recombination seems to be significant and cannot be neglected in the view point of performance, thermal protection and flow physics.

  • PDF

OPTIMUM STORAGE REALLOCATION AND GATE OPERATION IN MULTIPURPOSE RESERVOIRS

  • Hamid Moradkhani
    • Water Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.57-62
    • /
    • 2002
  • This research is intended to integrate long-term operation rules and real time operation policy for conservation & flood control in a reservoir. The familiar Yield model has been modified and used to provide long-term rule curves. The model employs linear programming technique under given physical conditions, i.e., total capacity, dead storage, spillways, outlet capacity and their respective elevations to find required and desired minimum storage fur different demands. To investigate the system behavior resulting from the above-mentioned operating policy, i.e., the rule curves, the simulation model was used. Results of the simulation model show that the results of the optimization model are indeed valid. After confirmation of the above mentioned rule curves by the simulation models, gate operation procedure was merged with the long term operation rules to determine the optimum reservoir operating policy. In the gate operation procedure, operating policy in downstream flood plain, i.e., determination of damaging and non-damaging discharges in flood plain, peak floods, which could be routed by reservoir, are determined. Also outflow hydrograph and variations of water surface levels for two known hydrographs are determined. To examine efficiency of the above-mentioned models and their ability in determining the optimum operation policy, Esteghlal reservoir in Iran was analyzed as a case study. A numerical model fur the solution of two-dimensional dam break problems using fractional step method is developed on unstructured grid. The model is based on second-order Weighted Averaged Flux(WAF) scheme with HLLC approximate Riemann solver. To control the nonphysical oscillations associated with second-order accuracy, TVD scheme with SUPERBEE limiter is used. The developed model is verified by comparing the computational solutions with analytic solutions in idealized test cases. Very good agreements have been achieved in the verifications.

  • PDF