• 제목/요약/키워드: Approximate Nearest Neighbor

Search Result 25, Processing Time 0.022 seconds

An Approximate k-Nearest Neighbor Search Algorithm for Content- Based Multimedia Information Retrieval (내용 기반 멀티미디어 정보 검색을 위한 근사 k-최근접 데이타 탐색 알고리즘)

  • Song, Kwang-Taek;Chang, Jae-Woo
    • Journal of KIISE:Databases
    • /
    • v.27 no.2
    • /
    • pp.199-208
    • /
    • 2000
  • The k-nearest neighbor search query based on similarity is very important for content-based multimedia information retrieval(MIR). The conventional exact k-nearest neighbor search algorithm is not efficient for the MIR application because multimedia data should be represented as high dimensional feature vectors. Thus, an approximate k-nearest neighbor search algorithm is required for the MIR applications because the performance increase may outweigh the drawback of receiving approximate results. For this, we propose a new approximate k-nearest neighbor search algorithm for high dimensional data. In addition, the comparison of the conventional algorithm with our approximate k-nearest neighbor search algorithm is performed in terms of retrieval performance. Results show that our algorithm is more efficient than the conventional ones.

  • PDF

The privacy protection algorithm of ciphertext nearest neighbor query based on the single Hilbert curve

  • Tan, Delin;Wang, Huajun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3087-3103
    • /
    • 2022
  • Nearest neighbor query in location-based services has become a popular application. Aiming at the shortcomings of the privacy protection algorithms of traditional ciphertext nearest neighbor query having the high system overhead because of the usage of the double Hilbert curves and having the inaccurate query results in some special circumstances, a privacy protection algorithm of ciphertext nearest neighbor query which is based on the single Hilbert curve has been proposed. This algorithm uses a single Hilbert curve to transform the two-dimensional coordinates of the points of interest into Hilbert values, and then encrypts them by the order preserving encryption scheme to obtain the one-dimensional ciphertext data which can be compared in numerical size. Then stores the points of interest as elements composed of index value and the ciphertext of the other information about the points of interest on the server-side database. When the user needs to use the nearest neighbor query, firstly calls the approximate nearest neighbor query algorithm proposed in this paper to query on the server-side database, and then obtains the approximate nearest neighbor query results. After that, the accurate nearest neighbor query result can be obtained by calling the precision processing algorithm proposed in this paper. The experimental results show that this privacy protection algorithm of ciphertext nearest neighbor query which is based on the single Hilbert curve is not only feasible, but also optimizes the system overhead and the accuracy of ciphertext nearest neighbor query result.

Study on Continuous Nearest Neighbor Query on Trajectory of Moving Objects (이동객체의 궤적에 대한 연속 최근접 질의에 관한 연구)

  • Chung, Ji-Moon
    • Journal of Digital Convergence
    • /
    • v.3 no.1
    • /
    • pp.149-163
    • /
    • 2005
  • Researches for NN(nearest neighbor) query which is often used in LBS system, have been worked. However. Conventional NN query processing techniques are usually meaningless in moving object management system for LBS since their results may be invalidated as soon as the query and data objects move. To solve these problems, in this paper we propose a new nearest neighbor query processing technique, called CTNN, which is possible to meet continuous trajectory nearest neighbor query processing. The proposed technique consists of Approximate CTNN technique which has quick response time, and Exact CTNN technique which makes it possible to search accurately nearest neighbor objects. Experimental results using GSTD datasets shows that the Exact CTNN technique has high accuracy, but has a little low performance for response time. They also shows that the Approximate CTNN technique has low accuracy comparing with the Exact CTNN, but has high response time.

  • PDF

The Method to Process Approximate k-Nearest Neighbor Queries in Spatial Database Systems (공간 데이터베이스 시스템에서 근사 k-최대근접질의의 처리방법)

  • 선휘준;김홍기
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.4
    • /
    • pp.443-448
    • /
    • 2003
  • Approximate k-nearest neighbor queries are frequently occurred for finding the k nearest neighbors to a given query point in spatial database systems. The number of searched nodes in an index must be minimized in order to increase the performance of approximate k nearest neighbor queries. In this paper. we suggest the technique of approximate k nearest neighbor queries on R-tree family by improving the existing algorithm and evaluate the performance of the proposed method in dynamic spatial database environments. The simulation results show that a proposed method always has a low number of disk access irrespective of object distribution, size of nearest neighbor queries and approximation rates as compared with an existing method.

  • PDF

Study on Continuous Nearest Neighbor Query on Trajectory of Moving Objects (이동객체의 궤적에 대한 연속 최근접 질의에 관한 연구)

  • Jeong, Ji-Mun
    • 한국디지털정책학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.517-530
    • /
    • 2005
  • Researches for NN(nearest neighbor) query which is often used in LBS system, have been worked. However, Conventional NN query processing techniques are usually meaningless in moving object management system for LBS since their results may be invalidated as soon as the query and data objects move. To solve these problems, in this paper we propose a new nearest neighbor query processing technique, called CTNN, which is possible to meet continuous trajectory nearest neighbor query processing. The proposed technique consists of Approximate CTNN technique which has quick response time, and Exact CTNN technique which makes it possible to search accurately nearest neighbor objects. Experimental results using GSTD datasets showed that the Exact CTNN technique has high accuracy, but has a little low performance for response time. They also showed that the Approximate CTNN technique has low accuracy comparing with the Exact CTNN, but has high response time.

  • PDF

Locality-Sensitive Hashing Techniques for Nearest Neighbor Search

  • Lee, Keon Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.300-307
    • /
    • 2012
  • When the volume of data grows big, some simple tasks could become a significant concern. Nearest neighbor search is such a task which finds from a data set the k nearest data points to queries. Locality-sensitive hashing techniques have been developed for approximate but fast nearest neighbor search. This paper introduces the notion of locality-sensitive hashing and surveys the locality-sensitive hashing techniques. It categories them based on several criteria, presents their characteristics, and compares their performance.

GLSL based Additional Learning Nearest Neighbor Algorithm suitable for Locating Unpaved Road (추가 학습이 빈번히 필요한 비포장도로에서 주행로 탐색에 적합한 GLSL 기반 ALNN Algorithm)

  • Ku, Bon Woo;Kim, Jun kyum;Rhee, Eun Joo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • Unmanned Autonomous Vehicle's driving road in the national defense includes not only paved roads, but also unpaved roads which have rough and unexpected changes. This Unmanned Autonomous Vehicles monitor and recon rugged or remote areas, and defend own position, they frequently encounter environments roads of various and unpredictable. Thus, they need additional learning to drive in this environment, we propose a Additional Learning Nearest Neighbor (ALNN) which is modified from Approximate Nearest Neighbor to allow for quick learning while avoiding the 'Forgetting' problem. In addition, since the Execution speed of the ALNN algorithm decreases as the learning data accumulates, we also propose a solution to this problem using GPU parallel processing based on OpenGL Shader Language. The ALNN based on GPU algorithm can be used in the field of national defense and other similar fields, which require frequent and quick application of additional learning in real-time without affecting the existing learning data.

k-Nearest Neighbor Querv Processing using Approximate Indexing in Road Network Databases (도로 네트워크 데이타베이스에서 근사 색인을 이용한 k-최근접 질의 처리)

  • Lee, Sang-Chul;Kim, Sang-Wook
    • Journal of KIISE:Databases
    • /
    • v.35 no.5
    • /
    • pp.447-458
    • /
    • 2008
  • In this paper, we address an efficient processing scheme for k-nearest neighbor queries to retrieve k static objects in road network databases. Existing methods cannot expect a query processing speed-up by index structures in road network databases, since it is impossible to build an index by the network distance, which cannot meet the triangular inequality requirement, essential for index creation, but only possible in a totally ordered set. Thus, these previous methods suffer from a serious performance degradation in query processing. Another method using pre-computed network distances also suffers from a serious storage overhead to maintain a huge amount of pre-computed network distances. To solve these performance and storage problems at the same time, this paper proposes a novel approach that creates an index for moving objects by approximating their network distances and efficiently processes k-nearest neighbor queries by means of the approximate index. For this approach, we proposed a systematic way of mapping each moving object on a road network into the corresponding absolute position in the m-dimensional space. To meet the triangular inequality this paper proposes a new notion of average network distance, and uses FastMap to map moving objects to their corresponding points in the m-dimensional space. After then, we present an approximate indexing algorithm to build an R*-tree, a multidimensional index, on the m-dimensional points of moving objects. The proposed scheme presents a query processing algorithm capable of efficiently evaluating k-nearest neighbor queries by finding k-nearest points (i.e., k-nearest moving objects) from the m-dimensional index. Finally, a variety of extensive experiments verifies the performance enhancement of the proposed approach by performing especially for the real-life road network databases.

Continuous Nearest Neighbor Query Processing on Trajectory of Moving Objects (이동객체의 궤적에 대한 연속 최근접 질의 처리)

  • 지정희;최보윤;김상호;류근호
    • Journal of KIISE:Databases
    • /
    • v.31 no.5
    • /
    • pp.492-504
    • /
    • 2004
  • Recently, as growing of interest for LBS(location-based services) techniques, lots of works on moving objects that continuously change their information over time, have been performed briskly. Also, researches for NN(nearest neighbor) query which has often been used in LBS, are progressed variously However, the results of conventional NN Query processing techniques may be invalidated as the query and data objects move. Therefore, they are usually meaningless in moving object management system such as LBS. To solve these problems, in this paper we propose a new nearest neighbor query processing technique, called CTNN, which is possible to meet accurate and continuous query processing for moving objects. Our techniques include an Approximate CTNN(ACTNN) technique, which has quick response time, and an Exact CTNN(ECTNN) technique, which makes it possible to search nearest neighbor objects accurately. In order to evaluate the proposed techniques, we experimented with various datasets. Experimental results showed that the ECTNN technique has high accuracy, but has a little low performance for response time. Also the ACTNN technique has low accuracy comparing with the ECTNN, but has quick response time The proposed techniques can be applied to navigation system, traffic control system, distribution information system, etc., and specially are most suitable when both data and query are moving objects and when we already know their trajectory.

Optimization of Warp-wide CUDA Implementation for Parallel Shifted Sort Algorithm (병렬 Shifted Sort 알고리즘의 Warp 단위 CUDA 구현 최적화)

  • Park, Taejung
    • Journal of Digital Contents Society
    • /
    • v.18 no.4
    • /
    • pp.739-745
    • /
    • 2017
  • This paper presents and discusses an implementation of the GPU shifted sorting method to find approximate k nearest neighbors which executes within "warp", the minimum execution unit in GPU parallel architecture. Also, this paper presents the comparison results with other two common nearest neighbor searching methods, GPU-based kd-tree and ANN (Approximate Nearest Neighbor) library. The proposed implementation focuses on the cases when k is small, i.e. 2, 4, 8, and 16, which are handled efficiently within warp to consider it is very common for applications to handle small k's. Also, this paper discusses optimization ways to implementation by improving memory management in a loop for the CUB open library and adopting CUDA commands which are supported by GPU hardware. The proposed implementation shows more than 16-fold speed-up against GPU-based other methods in the tests, implying that the improvement would become higher for more larger input data.