• Title/Summary/Keyword: Approaches to Learning

Search Result 994, Processing Time 0.031 seconds

Digital Library Interface Research Based on EEG, Eye-Tracking, and Artificial Intelligence Technologies: Focusing on the Utilization of Implicit Relevance Feedback (뇌파, 시선추적 및 인공지능 기술에 기반한 디지털 도서관 인터페이스 연구: 암묵적 적합성 피드백 활용을 중심으로)

  • Hyun-Hee Kim;Yong-Ho Kim
    • Journal of the Korean Society for information Management
    • /
    • v.41 no.1
    • /
    • pp.261-282
    • /
    • 2024
  • This study proposed and evaluated electroencephalography (EEG)-based and eye-tracking-based methods to determine relevance by utilizing users' implicit relevance feedback while navigating content in a digital library. For this, EEG/eye-tracking experiments were conducted on 32 participants using video, image, and text data. To assess the usefulness of the proposed methods, deep learning-based artificial intelligence (AI) techniques were used as a competitive benchmark. The evaluation results showed that EEG component-based methods (av_P600 and f_P3b components) demonstrated high classification accuracy in selecting relevant videos and images (faces/emotions). In contrast, AI-based methods, specifically object recognition and natural language processing, showed high classification accuracy for selecting images (objects) and texts (newspaper articles). Finally, guidelines for implementing a digital library interface based on EEG, eye-tracking, and artificial intelligence technologies have been proposed. Specifically, a system model based on implicit relevance feedback has been presented. Moreover, to enhance classification accuracy, methods suitable for each media type have been suggested, including EEG-based, eye-tracking-based, and AI-based approaches.

An Intelligent Decision Support System for Selecting Promising Technologies for R&D based on Time-series Patent Analysis (R&D 기술 선정을 위한 시계열 특허 분석 기반 지능형 의사결정지원시스템)

  • Lee, Choongseok;Lee, Suk Joo;Choi, Byounggu
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.79-96
    • /
    • 2012
  • As the pace of competition dramatically accelerates and the complexity of change grows, a variety of research have been conducted to improve firms' short-term performance and to enhance firms' long-term survival. In particular, researchers and practitioners have paid their attention to identify promising technologies that lead competitive advantage to a firm. Discovery of promising technology depends on how a firm evaluates the value of technologies, thus many evaluating methods have been proposed. Experts' opinion based approaches have been widely accepted to predict the value of technologies. Whereas this approach provides in-depth analysis and ensures validity of analysis results, it is usually cost-and time-ineffective and is limited to qualitative evaluation. Considerable studies attempt to forecast the value of technology by using patent information to overcome the limitation of experts' opinion based approach. Patent based technology evaluation has served as a valuable assessment approach of the technological forecasting because it contains a full and practical description of technology with uniform structure. Furthermore, it provides information that is not divulged in any other sources. Although patent information based approach has contributed to our understanding of prediction of promising technologies, it has some limitations because prediction has been made based on the past patent information, and the interpretations of patent analyses are not consistent. In order to fill this gap, this study proposes a technology forecasting methodology by integrating patent information approach and artificial intelligence method. The methodology consists of three modules : evaluation of technologies promising, implementation of technologies value prediction model, and recommendation of promising technologies. In the first module, technologies promising is evaluated from three different and complementary dimensions; impact, fusion, and diffusion perspectives. The impact of technologies refers to their influence on future technologies development and improvement, and is also clearly associated with their monetary value. The fusion of technologies denotes the extent to which a technology fuses different technologies, and represents the breadth of search underlying the technology. The fusion of technologies can be calculated based on technology or patent, thus this study measures two types of fusion index; fusion index per technology and fusion index per patent. Finally, the diffusion of technologies denotes their degree of applicability across scientific and technological fields. In the same vein, diffusion index per technology and diffusion index per patent are considered respectively. In the second module, technologies value prediction model is implemented using artificial intelligence method. This studies use the values of five indexes (i.e., impact index, fusion index per technology, fusion index per patent, diffusion index per technology and diffusion index per patent) at different time (e.g., t-n, t-n-1, t-n-2, ${\cdots}$) as input variables. The out variables are values of five indexes at time t, which is used for learning. The learning method adopted in this study is backpropagation algorithm. In the third module, this study recommends final promising technologies based on analytic hierarchy process. AHP provides relative importance of each index, leading to final promising index for technology. Applicability of the proposed methodology is tested by using U.S. patents in international patent class G06F (i.e., electronic digital data processing) from 2000 to 2008. The results show that mean absolute error value for prediction produced by the proposed methodology is lower than the value produced by multiple regression analysis in cases of fusion indexes. However, mean absolute error value of the proposed methodology is slightly higher than the value of multiple regression analysis. These unexpected results may be explained, in part, by small number of patents. Since this study only uses patent data in class G06F, number of sample patent data is relatively small, leading to incomplete learning to satisfy complex artificial intelligence structure. In addition, fusion index per technology and impact index are found to be important criteria to predict promising technology. This study attempts to extend the existing knowledge by proposing a new methodology for prediction technology value by integrating patent information analysis and artificial intelligence network. It helps managers who want to technology develop planning and policy maker who want to implement technology policy by providing quantitative prediction methodology. In addition, this study could help other researchers by proving a deeper understanding of the complex technological forecasting field.

Traffic Flooding Attack Detection on SNMP MIB Using SVM (SVM을 이용한 SNMP MIB에서의 트래픽 폭주 공격 탐지)

  • Yu, Jae-Hak;Park, Jun-Sang;Lee, Han-Sung;Kim, Myung-Sup;Park, Dai-Hee
    • The KIPS Transactions:PartC
    • /
    • v.15C no.5
    • /
    • pp.351-358
    • /
    • 2008
  • Recently, as network flooding attacks such as DoS/DDoS and Internet Worm have posed devastating threats to network services, rapid detection and proper response mechanisms are the major concern for secure and reliable network services. However, most of the current Intrusion Detection Systems(IDSs) focus on detail analysis of packet data, which results in late detection and a high system burden to cope with high-speed network environment. In this paper we propose a lightweight and fast detection mechanism for traffic flooding attacks. Firstly, we use SNMP MIB statistical data gathered from SNMP agents, instead of raw packet data from network links. Secondly, we use a machine learning approach based on a Support Vector Machine(SVM) for attack classification. Using MIB and SVM, we achieved fast detection with high accuracy, the minimization of the system burden, and extendibility for system deployment. The proposed mechanism is constructed in a hierarchical structure, which first distinguishes attack traffic from normal traffic and then determines the type of attacks in detail. Using MIB data sets collected from real experiments involving a DDoS attack, we validate the possibility of our approaches. It is shown that network attacks are detected with high efficiency, and classified with low false alarms.

Analysis on the Recent Simulation Results of the Pilot Carbon Emission Trading System in Korea (국내 온실가스 배출권거래제도 시범도입방안에 관한 소고(小考))

  • Lee, Sang-Youp;Kim, Hyo-Sun;Yoo, Sang-Hee
    • Environmental and Resource Economics Review
    • /
    • v.13 no.2
    • /
    • pp.271-300
    • /
    • 2004
  • We investigate the two recent simulations of the proto-type domestic carbon emission trading system in Korea and draw some policy implications. The first simulation includes the 5 electric power companies based on baseline and credit. But the second one is with the 7 energy-intensive companies based on cap and trade. The voluntary approaches in this paper revealed the instability of market equilibrium, i.e., price volatility or distortion, excess supply or demand. These phenomena stems from excess incentives to the players, asymmetric information, players' irresponsible strategic behaviors, and non acquaintance of trading system. This paper suggests the basic design for domestic carbon trading system in future and a stepwise introduction strategy for it including the incentive auction scheme, the total quantity of incentive needed, and how to finance it. Meantime, the further simulations on the various sectors based on voluntary participation must be essential for learning experiences and better policy design.

  • PDF

A Study on Spam Document Classification Method using Characteristics of Keyword Repetition (단어 반복 특징을 이용한 스팸 문서 분류 방법에 관한 연구)

  • Lee, Seong-Jin;Baik, Jong-Bum;Han, Chung-Seok;Lee, Soo-Won
    • The KIPS Transactions:PartB
    • /
    • v.18B no.5
    • /
    • pp.315-324
    • /
    • 2011
  • In Web environment, a flood of spam causes serious social problems such as personal information leak, monetary loss from fishing and distribution of harmful contents. Moreover, types and techniques of spam distribution which must be controlled are varying as days go by. The learning based spam classification method using Bag-of-Words model is the most widely used method until now. However, this method is vulnerable to anti-spam avoidance techniques, which recent spams commonly have, because it classifies spam documents utilizing only keyword occurrence information from classification model training process. In this paper, we propose a spam document detection method using a characteristic of repeating words occurring in spam documents as a solution of anti-spam avoidance techniques. Recently, most spam documents have a trend of repeating key phrases that are designed to spread, and this trend can be used as a measure in classifying spam documents. In this paper, we define six variables, which represent a characteristic of word repetition, and use those variables as a feature set for constructing a classification model. The effectiveness of proposed method is evaluated by an experiment with blog posts and E-mail data. The result of experiment shows that the proposed method outperforms other approaches.

Development of Neural Network Model for Estimation of Undrained Shear Strength of Korean Soft Soil Based on UU Triaxial Test and Piezocone Test Results (비압밀-비배수(UU) 삼축실험과 피에조콘 실험결과를 이용한 국내 연약지반의 비배수전단강도 추정 인공신경망 모델 개발)

  • Kim Young-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.73-84
    • /
    • 2005
  • A three layered neural network model was developed using back propagation algorithm to estimate the UU undrained shear strength of Korean soft soil based on the database of actual undrained shear strengths and piezocone measurements compiled from 8 sites over the Korea. The developed model was validated by comparing model predictions with measured values about new piezocone data, which were not previously employed during development of model. Performance of the neural network model was also compared with conventional empirical methods. It was found that the number of neuron in hidden layer is different for the different combination of transfer functions of neural network models. However, all piezocone neural network models are successful in inferring a complex relationship between piezocone measurements and the undrained shear strength of Korean soft soils, which give relatively high coefficients of determination ranging from 0.69 to 0.72. Since neural network model has been generalized by self-learning from database of piezocone measurements and undrained shear strength over the various sites, the developed neural network models give more precise and generally reliable undrained shear strengths than empirical approaches which still need site specific calibration.

Comparison of the Science Curricula of Korea, the United States, England, and Singapore: Focus on the Concept of Energy (한국, 미국, 영국, 싱가포르의 과학 교육과정 비교 - 에너지 개념을 중심으로 -)

  • Yoon, Hye-Gyoung;Cheong, Yong Wook
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.5
    • /
    • pp.799-812
    • /
    • 2017
  • Energy as a powerful and unifying concept to understand natural world has been regarded as one of the key concepts of the science curricula in many countries. However, concerning learning and teaching of energy, various difficulties have been reported widely. This study aimed at analyzing and comparing science curricula of Korea, the U.S., England, and Singapore regarding energy to identify the potential issues for energy curriculum in the future. 2015 revised Korean science curriculum, Next Generation Science Standards of the U.S., Science programmes of study of England, and the Science syllabus of Singapore were compared based on six basic elements of the concept of energy: energy form, energy resource, energy transfer, energy transformation, energy conservation, and energy dissipation. Achievement criteria that include energy were extracted from all curricula and categorized into the six elements. The frequency and distribution of the six elements in the four curricula were compared in terms of school levels and disciplinary areas. Contents of six energy elements were also compared. Though all curricula emphasized energy as a key science concept, we found many differences in the degree of emphasis of basic ideas and specific contents and approaches. Korean curriculum is characterized by 1) high frequency concerning energy form among the elements of the concept of energy, 2) introducing energy forms of unclear meaning, which are not linked with other physical quantities, 3) emphasis on energy conversion in comparison of energy transfer, 4) focusing on mechanical energy conservation instead of more general energy conservation, and 5) absence of the concept of 'system' concerning energy. Issues for energy curriculum development were discussed.

Classification of Urban Green Space Using Airborne LiDAR and RGB Ortho Imagery Based on Deep Learning (항공 LiDAR 및 RGB 정사 영상을 이용한 딥러닝 기반의 도시녹지 분류)

  • SON, Bokyung;LEE, Yeonsu;IM, Jungho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.3
    • /
    • pp.83-98
    • /
    • 2021
  • Urban green space is an important component for enhancing urban ecosystem health. Thus, identifying the spatial structure of urban green space is required to manage a healthy urban ecosystem. The Ministry of Environment has provided the level 3 land cover map(the highest (1m) spatial resolution map) with a total of 41 classes since 2010. However, specific urban green information such as street trees was identified just as grassland or even not classified them as a vegetated area in the map. Therefore, this study classified detailed urban green information(i.e., tree, shrub, and grass), not included in the existing level 3 land cover map, using two types of high-resolution(<1m) remote sensing data(i.e., airborne LiDAR and RGB ortho imagery) in Suwon, South Korea. U-Net, one of image segmentation deep learning approaches, was adopted to classify detailed urban green space. A total of three classification models(i.e., LRGB10, LRGB5, and RGB5) were proposed depending on the target number of classes and the types of input data. The average overall accuracies for test sites were 83.40% (LRGB10), 89.44%(LRGB5), and 74.76%(RGB5). Among three models, LRGB5, which uses both airborne LiDAR and RGB ortho imagery with 5 target classes(i.e., tree, shrub, grass, building, and the others), resulted in the best performance. The area ratio of total urban green space(based on trees, shrub, and grass information) for the entire Suwon was 45.61%(LRGB10), 43.47%(LRGB5), and 44.22%(RGB5). All models were able to provide additional 13.40% of urban tree information on average when compared to the existing level 3 land cover map. Moreover, these urban green classification results are expected to be utilized in various urban green studies or decision making processes, as it provides detailed information on urban green space.

A Study on the Impact of Artificial Intelligence on Decision Making : Focusing on Human-AI Collaboration and Decision-Maker's Personality Trait (인공지능이 의사결정에 미치는 영향에 관한 연구 : 인간과 인공지능의 협업 및 의사결정자의 성격 특성을 중심으로)

  • Lee, JeongSeon;Suh, Bomil;Kwon, YoungOk
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.231-252
    • /
    • 2021
  • Artificial intelligence (AI) is a key technology that will change the future the most. It affects the industry as a whole and daily life in various ways. As data availability increases, artificial intelligence finds an optimal solution and infers/predicts through self-learning. Research and investment related to automation that discovers and solves problems on its own are ongoing continuously. Automation of artificial intelligence has benefits such as cost reduction, minimization of human intervention and the difference of human capability. However, there are side effects, such as limiting the artificial intelligence's autonomy and erroneous results due to algorithmic bias. In the labor market, it raises the fear of job replacement. Prior studies on the utilization of artificial intelligence have shown that individuals do not necessarily use the information (or advice) it provides. Algorithm error is more sensitive than human error; so, people avoid algorithms after seeing errors, which is called "algorithm aversion." Recently, artificial intelligence has begun to be understood from the perspective of the augmentation of human intelligence. We have started to be interested in Human-AI collaboration rather than AI alone without human. A study of 1500 companies in various industries found that human-AI collaboration outperformed AI alone. In the medicine area, pathologist-deep learning collaboration dropped the pathologist cancer diagnosis error rate by 85%. Leading AI companies, such as IBM and Microsoft, are starting to adopt the direction of AI as augmented intelligence. Human-AI collaboration is emphasized in the decision-making process, because artificial intelligence is superior in analysis ability based on information. Intuition is a unique human capability so that human-AI collaboration can make optimal decisions. In an environment where change is getting faster and uncertainty increases, the need for artificial intelligence in decision-making will increase. In addition, active discussions are expected on approaches that utilize artificial intelligence for rational decision-making. This study investigates the impact of artificial intelligence on decision-making focuses on human-AI collaboration and the interaction between the decision maker personal traits and advisor type. The advisors were classified into three types: human, artificial intelligence, and human-AI collaboration. We investigated perceived usefulness of advice and the utilization of advice in decision making and whether the decision-maker's personal traits are influencing factors. Three hundred and eleven adult male and female experimenters conducted a task that predicts the age of faces in photos and the results showed that the advisor type does not directly affect the utilization of advice. The decision-maker utilizes it only when they believed advice can improve prediction performance. In the case of human-AI collaboration, decision-makers higher evaluated the perceived usefulness of advice, regardless of the decision maker's personal traits and the advice was more actively utilized. If the type of advisor was artificial intelligence alone, decision-makers who scored high in conscientiousness, high in extroversion, or low in neuroticism, high evaluated the perceived usefulness of the advice so they utilized advice actively. This study has academic significance in that it focuses on human-AI collaboration that the recent growing interest in artificial intelligence roles. It has expanded the relevant research area by considering the role of artificial intelligence as an advisor of decision-making and judgment research, and in aspects of practical significance, suggested views that companies should consider in order to enhance AI capability. To improve the effectiveness of AI-based systems, companies not only must introduce high-performance systems, but also need employees who properly understand digital information presented by AI, and can add non-digital information to make decisions. Moreover, to increase utilization in AI-based systems, task-oriented competencies, such as analytical skills and information technology capabilities, are important. in addition, it is expected that greater performance will be achieved if employee's personal traits are considered.

Study on the integrative application program for cultivating primary school students' personal relationship skills (초등학생들의 대인관계 기술 함양을 위한 통합적 적용방안 연구)

  • Choi, Bokhee
    • The Journal of Korean Philosophical History
    • /
    • no.25
    • /
    • pp.71-71
    • /
    • 2009
  • This study aims to provide a theoretical base for making a character education program on "how primary school students to cultivate their own right and good-minded characters." This study consists of three approaches: 1) an integrative approach based on the social and emotional learning, 2) development of integrative programs articulating three key domains directly and indirectly influencing students' character formation - school, family and local community(society), 3) maximum use of the educational institutes' moral education curriculums and the potential curriculums in the surrounding environment. In concrete, by specializing "social awareness and relationship skills" from various social and emotional ones, this study suggests an integrative program for the character education based on the theory of virtue in the Eastern philosophy. To develop such an Eastern philosophy-based integrative program for the cultivation of the social awareness and personal relationship skills, this study applies some virtue items of Eastern Ethics: for examples, 'rectification of the name(正名)' to improve skills for rational choice on the awareness and performance of social roles, 'empathy(忠恕)' to enhance the ability to share another person's feelings and emotions as if they were my own, 'reflect and seek in oneself(反求諸己)' to solve conflicts in peace and self-reflection, 'difficulty with countenance(色難)' to respond to others by understanding their situations and characters, 'select and follow good qualities of others and reform their bad qualities(擇其善者而從之, 其不善者而改之)' to make good results from various forms of personal relationship, and 'keep same respect as at first to old acquaintance(久而敬之)' to maintain good and emotional relationships. In particular, by underlining 'rectification of the name(正名)' and 'reflect and seek in oneself(反求諸己)', this study attempts to develop an alternative integrative program articulating three domains of school, family and local community.