• Title/Summary/Keyword: Approaches to Learning

Search Result 1,006, Processing Time 0.03 seconds

Model development in freshwater ecology with a case study using evolutionary computation

  • Kim, Dong-Kyun;Jeong, Kwang-Seuk;McKay, Robert Ian (Bob);Chon, Tae-Soo;Kim, Hyun-Woo;Joo, Gea-Jae
    • Journal of Ecology and Environment
    • /
    • v.33 no.4
    • /
    • pp.275-288
    • /
    • 2010
  • Ecological modeling faces some unique problems in dealing with complex environment-organism relationships, making it one of the toughest domains that might be encountered by a modeler. Newer technologies and ecosystem modeling paradigms have recently been proposed, all as part of a broader effort to reduce the uncertainty in models arising from qualitative and quantitative imperfections in the ecological data. In this paper, evolutionary computation modeling approaches are introduced and proposed as useful modeling tools for ecosystems. The results of our case study support the applicability of an algal predictive model constructed via genetic programming. In conclusion, we propose that evolutionary computation may constitute a powerful tool for the modeling of highly complex objects, such as river ecosystems.

Restricting Answer Candidates Based on Taxonomic Relatedness of Integrated Lexical Knowledge Base in Question Answering

  • Heo, Jeong;Lee, Hyung-Jik;Wang, Ji-Hyun;Bae, Yong-Jin;Kim, Hyun-Ki;Ock, Cheol-Young
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.191-201
    • /
    • 2017
  • This paper proposes an approach using taxonomic relatedness for answer-type recognition and type coercion in a question-answering system. We introduce a question analysis method for a lexical answer type (LAT) and semantic answer type (SAT) and describe the construction of a taxonomy linking them. We also analyze the effectiveness of type coercion based on the taxonomic relatedness of both ATs. Compared with the rule-based approach of IBM's Watson, our LAT detector, which combines rule-based and machine-learning approaches, achieves an 11.04% recall improvement without a sharp decline in precision. Our SAT classifier with a relatedness-based validation method achieves a precision of 73.55%. For type coercion using the taxonomic relatedness between both ATs and answer candidates, we construct an answer-type taxonomy that has a semantic relationship between the two ATs. In this paper, we introduce how to link heterogeneous lexical knowledge bases. We propose three strategies for type coercion based on the relatedness between the two ATs and answer candidates in this taxonomy. Finally, we demonstrate that this combination of individual type coercion creates a synergistic effect.

Analyzing behavior of circular concrete-filled steel tube column using improved fuzzy models

  • Zheng, Yuxin;Jin, Hongwei;Jiang, Congying;Moradi, Zohre;Khadimallah, Mohamed Amine;Safa, Maryam
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.625-637
    • /
    • 2022
  • Axial compression capacity (Pu) is a significant yet complex parameter of concrete-filled steel tube (CFST) columns. This study offers a novel ensemble tool, adaptive neuro-fuzzy inference system (ANFIS) supervised by equilibrium optimization (EO), for accurately predicting this parameter. Moreover, grey wolf optimization (GWO) and Harris hawk optimizer (HHO) are considered as comparative supervisors. The used data is taken from earlier literature provided by finite element analysis. ANFIS is trained by several population sizes of the EO, GWO, and HHO to detect the best configurations. At a glance, the results showed the competency of such ensembles for learning and reproducing the Pu behavior. In details, respective mean absolute errors along with correlation values of 4.1809% and 0.99564, 10.5947% and 0.98006, and 4.8947% and 0.99462 obtained for the EO-ANFIS, GWO-ANFIS, and HHO-ANFIS, respectively, indicated that the proposed EO-ANFIS can analyze and predict the behavior of CFST columns with the highest accuracy. Considering both time and accuracy, the EO provides the most efficient optimization of ANFIS and can be a nice substitute for experimental approaches.

Depth Map Completion using Nearest Neighbor Kernel (최근접 이웃 커널을 이용한 깊이 영상 완성 기술)

  • Taehyun, Jeong;Kutub, Uddin;Byung Tae, Oh
    • Journal of Broadcast Engineering
    • /
    • v.27 no.6
    • /
    • pp.906-913
    • /
    • 2022
  • In this paper, we propose a new deep network architecture using nearest neighbor kernel for the estimation of dense depth map from its sparse map and corresponding color information. First, we propose to decompose the depth map signal into the structure and details for easier prediction. We then propose two separate subnetworks for prediction of both structure and details using classification and regression approaches, respectively. Moreover, the nearest neighboring kernel method has been newly proposed for accurate prediction of structure signal. As a result, the proposed method showed better results than other methods quantitatively and qualitatively.

Predicting the Young's modulus of frozen sand using machine learning approaches: State-of-the-art review

  • Reza Sarkhani Benemaran;Mahzad Esmaeili-Falak
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.507-527
    • /
    • 2023
  • Accurately estimation of the geo-mechanical parameters in Artificial Ground Freezing (AGF) is a most important scientific topic in soil improvement and geotechnical engineering. In order for this, one way is using classical and conventional constitutive models based on different theories like critical state theory, Hooke's law, and so on, which are time-consuming, costly, and troublous. The others are the application of artificial intelligence (AI) techniques to predict considered parameters and behaviors accurately. This study presents a comprehensive data-mining-based model for predicting the Young's Modulus of frozen sand under the triaxial test. For this aim, several single and hybrid models were considered including additive regression, bagging, M5-Rules, M5P, random forests (RF), support vector regression (SVR), locally weighted linear (LWL), gaussian process regression (GPR), and multi-layered perceptron neural network (MLP). In the present study, cell pressure, strain rate, temperature, time, and strain were considered as the input variables, where the Young's Modulus was recognized as target. The results showed that all selected single and hybrid predicting models have acceptable agreement with measured experimental results. Especially, hybrid Additive Regression-Gaussian Process Regression and Bagging-Gaussian Process Regression have the best accuracy based on Model performance assessment criteria.

A Study on Code Vulnerability Repair via Large Language Models (대규모 언어모델을 활용한 코드 취약점 리페어)

  • Woorim Han;Miseon Yu;Yunheung Paek
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.757-759
    • /
    • 2024
  • Software vulnerabilities represent security weaknesses in software systems that attackers exploit for malicious purposes, resulting in potential system compromise and data breaches. Despite the increasing prevalence of these vulnerabilities, manual repair efforts by security analysts remain time-consuming. The emergence of deep learning technologies has provided promising opportunities for automating software vulnerability repairs, but existing AIbased approaches still face challenges in effectively handling complex vulnerabilities. This paper explores the potential of large language models (LLMs) in addressing these limitations, examining their performance in code vulnerability repair tasks. It introduces the latest research on utilizing LLMs to enhance the efficiency and accuracy of fixing security bugs.

Comparative Assessment of Linear Regression and Machine Learning for Analyzing the Spatial Distribution of Ground-level NO2 Concentrations: A Case Study for Seoul, Korea (서울 지역 지상 NO2 농도 공간 분포 분석을 위한 회귀 모델 및 기계학습 기법 비교)

  • Kang, Eunjin;Yoo, Cheolhee;Shin, Yeji;Cho, Dongjin;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1739-1756
    • /
    • 2021
  • Atmospheric nitrogen dioxide (NO2) is mainly caused by anthropogenic emissions. It contributes to the formation of secondary pollutants and ozone through chemical reactions, and adversely affects human health. Although ground stations to monitor NO2 concentrations in real time are operated in Korea, they have a limitation that it is difficult to analyze the spatial distribution of NO2 concentrations, especially over the areas with no stations. Therefore, this study conducted a comparative experiment of spatial interpolation of NO2 concentrations based on two linear-regression methods(i.e., multi linear regression (MLR), and regression kriging (RK)), and two machine learning approaches (i.e., random forest (RF), and support vector regression (SVR)) for the year of 2020. Four approaches were compared using leave-one-out-cross validation (LOOCV). The daily LOOCV results showed that MLR, RK, and SVR produced the average daily index of agreement (IOA) of 0.57, which was higher than that of RF (0.50). The average daily normalized root mean square error of RK was 0.9483%, which was slightly lower than those of the other models. MLR, RK and SVR showed similar seasonal distribution patterns, and the dynamic range of the resultant NO2 concentrations from these three models was similar while that from RF was relatively small. The multivariate linear regression approaches are expected to be a promising method for spatial interpolation of ground-level NO2 concentrations and other parameters in urban areas.

Building change detection in high spatial resolution images using deep learning and graph model (딥러닝과 그래프 모델을 활용한 고해상도 영상의 건물 변화탐지)

  • Park, Seula;Song, Ahram
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.227-237
    • /
    • 2022
  • The most critical factors for detecting changes in very high-resolution satellite images are building positional inconsistencies and relief displacements caused by satellite side-view. To resolve the above problems, additional processing using a digital elevation model and deep learning approach have been proposed. Unfortunately, these approaches are not sufficiently effective in solving these problems. This study proposed a change detection method that considers both positional and topology information of buildings. Mask R-CNN (Region-based Convolutional Neural Network) was trained on a SpaceNet building detection v2 dataset, and the central points of each building were extracted as building nodes. Then, triangulated irregular network graphs were created on building nodes from temporal images. To extract the area, where there is a structural difference between two graphs, a change index reflecting the similarity of the graphs and differences in the location of building nodes was proposed. Finally, newly changed or deleted buildings were detected by comparing the two graphs. Three pairs of test sites were selected to evaluate the proposed method's effectiveness, and the results showed that changed buildings were detected in the case of side-view satellite images with building positional inconsistencies.

A Study on Activistic Construction of Number Concept in the Children at the Beginning of School Age (학령 초의 활동주의적 수 개념 구성에 관한 연구)

  • Ko, Jung-Hwa
    • Journal of Educational Research in Mathematics
    • /
    • v.17 no.3
    • /
    • pp.309-331
    • /
    • 2007
  • Mathematics education starts from learning the concept of number. How the children at the beginning of school age learn the concept of natural number is therefore important for their future mathematics education. Since ancient Greek period, the concept of natural number has reflected various mathematical-philosophical points of view at each period and has been discussed ceaselessly. The concept of natural number is hard to define. Since 19th century, it has also been widely discussed in psychology and education on how to teach the concept of natural number to the children at the beginning of school age. Most of the works, however, were focused on limited aspects of natural number concept. This study aims to show the best way to teach the children at the beginning of school age the various aspects of natural number concept based on activistic perspective, which played a crucial role in modern mathematics education. With this purpose, I investigated the theory of the activistic construction of knowledge and the construction of natural number concept through activity, and activistic approaches about instruction in natural number concept made by Kant, Dewey, Piaget, Davydov and Freudenthal. In addition, I also discussed various aspects of natural number concept in historical and mathematical-philosophical points of view. Based on this investigation, I tried to find out existing problems in instructing natural number to primary school children in the 7th National Curriculum and aimed to provide a new solution to improve present problems based on activistic approaches. And based on activistic perspective, I conducted an experiment using Cuisenaire colour rods and showed that even the children at the beginning of school age can acquire the various aspects of natural number concept efficiently. To sum up, in this thesis, I analyzed epistemological background on activistic construction of natural number concept and presented activistic approach method to teach various aspects of natural number concept to the children at the beginning of school age based on activism.

  • PDF

The Role of Fundamentalization of Education in Improving the Future Specialists Professional Training with Usage of Multimedia Technologies

  • Palshkov, Kostiantyn;Kochubei, Olena;Tsokur, Olga;Tiahur, Vasyl;Tiahur, Liubomyra;Filimonova, Tetiana;Kuzminskyi, Anatolii
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.95-102
    • /
    • 2022
  • The article considers the fundamentalization of education in improving the future specialists professional training with usage of multimedia technologies by various scientists. Various points of view and approaches to defining the concepts of fundamentalization of education and multimedia technologies are identified. The concept of fundamentalization of professional training of a future specialist is based on the goals and functions of fundamentalization and - on the ways and means of achieving it, etc. Most authors agree only in their views that the fundamentalization of education is aimed at improving the quality of education and the education of the individual. Others involve the formation of a culture and worldview, increasing the creative and intellectual potential, forming the professional competence of a specialist and the potential for further education, and so on. The term multimedia refers to interactive systems that provide processing of moving and still video images, animated graphics, high-quality audio and speech. It is found out that professional training of a specialist by means of multimedia technologies includes not only the activities of the teacher and student, which form the learning process, but also the independent activity of the subject, self-development, assimilation of experience by the subject through analysis, comprehension and transformation of the field of activity in which he is included. It is revealed through the implementation of which approaches to the fundamentalization of higher professional education, it becomes possible to fully present theoretical training courses and effectively pass practical training by students, which contributes to improving the quality of training of future specialists in higher education institutions. Theoretical analysis of scientific views indicates a fairly serious attention of scientists to the problem of professional readiness of specialists and the possibility of higher educational institutions in preparing for it. At the same time, professional readiness is considered from different positions: as an active state of a person, which manifests itself in activity; as a result of activity; as goals of activity; as a quality that characterizes the attitude to solving professional problems and social situations; as a prerequisite for purposeful activity; as a form of activity of the subject; as an integral formation of personality; as a component of socio-professional culture; as a complex professionally significant neoplasm of the individual.