• Title/Summary/Keyword: Applied Stress

Search Result 6,097, Processing Time 0.037 seconds

Stress Analysis of Rotary Turbine Engine Disc in High Temperature (고온에서 회전하는 터빈엔진 디스크의 응력해석)

  • 황수철
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.4
    • /
    • pp.33-41
    • /
    • 1995
  • This study includes thermal plasticity analyses for a turbine rotor with the simple geometry and the boundary conditions. When centrifugal or thermal stress are applied at the high temperature material of engine blade, stress distributions I material ($\sigma$${\gamma}$${\gamma}$, $\sigma$$\theta$$\theta$, $\tau$${\gamma}$$\theta$, Mises stress) are analyzed by computer simulation(ABQUS) as followings; 1. The maximum stress at the radial direction() is applied at the upper middle part of spline hole. 2. The maximum stress at the tangential direction() is applied at the upper right boundary of spline hole. 3. The maximum shear stress () in () direction is applied at the upper middle part of spline hole. 4. The maximum Mises stress is applied at the upper right boundary of spline hole. This stress is due to the critical stress by which rotor can be fractured according to elapsed time.

  • PDF

Cr - Mo鋼 熔接 後熱處理材 의 勞破壞 에 關한 硏究

  • 박재규;김석원;김연식
    • Journal of Welding and Joining
    • /
    • v.3 no.2
    • /
    • pp.16-26
    • /
    • 1985
  • Post weld heat treatment(PWHT), at more than 600.deg. C, is essential to remove residual stress and hydrogen in weld HAZ and improve fatigue characteristics. However, residual stress during PWHT is responsible for PWHT embitterment and it promotes precipitation of impurities to grain boundary. In this paper, the effect of stress simulated residual stress on fatigue failure was evaluated by fatigue test, microhardness test and fractograph. The obtained results are summarized as follows; (1) The fatigue crack growth rate(da/dN) of parent and heat treated parent was affected by microstructure due to heat treatment and it depended on stress intensity factor (.DELTA.k). (2) The fatigue strength of weld HAZ was dependent on applied stress during PWHT and da/dN after PWHT was slower than as-weld. (3) Softening amount of weld HAZ was bigger than any other due to PWHT. Hardness value of weld HAZ was affected by heat treatment under the applied stress of 10 $kgf/mm^2$, but beyond 20 $kgf/mm^2$ it was increased by the applied stress rather than heat treatment. (4) Beyond the applied stress of 20 $kgf/mm^2$ during PWHT, intergranular fracture surface was observed and its amount was increased with applied stress during PWHT. (5) Effect of applied stress during PWHT on aspect of fracture surface was larger rather than that on fatigue crack growth behavior.

  • PDF

A PHOTOELASTIC ANALYSIS OF STRESS DISTRIBUTIONS AROUND FIVE DIFFERENT TYPES OF ENDOSSEOUS IMPLANTS ACCORDING TO THEIR STRUCTURES (5종 골내 임플란트의 구조에 따른 주위의 응력분산에 관한 광탄성학적 연구)

  • Lee Jeong-Nam;Cho Sung-Am
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.4
    • /
    • pp.643-659
    • /
    • 1993
  • This study was performed for the purpose of evaluating the stress distributions around five different types of implants according to their structures. The stress distribution around the surrounding bone was analysed by two-dimensional photoelastic method. Five epoxy resin models were made, and vertical and lateral forces were applied to the models. A circular polariscope was used to record the isochromatic fringes. The results of this study were summerized as follows : 1. Threaded type implants showed more even stress distribution patterns than cylinderical type implants when vertical and lateral forces were applied. 2. The stress concentrated patterns were observed at the neck portion and middle portion of the cylindrical type implants comparing with threaded type implants when vertical force was applied. 3. Model 1 and model 4 which are tthreaded type implants showed similar stress distribution patterns at the middle and apical portions and more stress was concentrated at the neck porion of model 1 comparing with model 4 when vertical force was applied. The stresses around model 1 were more evenly distributed when lateral force was applied. 4. More stress was concentrated at the neck and middle portion of cylindrical type implants than threaded type implants when lateral force was applied. 5. Model 1 showed the most even stress distribution patterns when lateral force was applied and stress distribution did no occured at the apical portion of modedl 2 when lateral force was applied. 6. There were almost no differences in stress concentrated patterns with or without having hollow design. And the stress concentrated patterns were observed at the corner of apex in model 5 which has hollow design when vertical force was applied.

  • PDF

Metabolic changes during adaptation to saline condition and stress memory of Arabidopsis cells

  • Chun, Hyun Jin;Park, Mi Suk;Lee, Su Hyeon;Jin, Byung-Jun;Cho, Hyun Min;Hong, Young-Shick;Kim, Min Chul
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.175-175
    • /
    • 2017
  • To understand molecular mechanisms underlying adaptation of plant cells to saline stress and stress memory, we developed Arabidopsis callus suspension-cultured cells adapted to high salt. Adapted cells to high salt exhibited enhanced tolerance compared to control cells. Moreover, the salt tolerance of adapted cells was stably maintained even after the stress is relieved, indicating that the acquired salt tolerance of adapted cells was memorized. In order to characterize metabolic responses of plant cells during adaptation to high salt stress as well as stress memory, we compared metabolic profiles of salt-adapted and stress-memorized cells with control cells by using NMR spectroscopy. A principle component analysis showed clear metabolic discrimination among control, salt-adapted and stress-memorized cells. Compared with control cells, metabolites related to shikimate metabolism such as tyrosine, and flavonol glycosides, which are related to protective mechanism of plant against stresses were largely up-regulated in adapted cell lines. Moreover, coniferin, a precursor of lignin, was more abundant in salt-adapted cells than control cells. Cell morphology analysis using transmission electron microscopy indicated that cell wall thickness of salt-adapted cells was significantly induced compared to control cells. Consistently, salt adapted cells contained more lignin in their cell walls compared to control cells. The results provide new insight into mechanisms of plant adaptation to saline stress as well as stress memory in metabolic level.

  • PDF

The Effect of Surface Treatment on Creep Behaviors of Mg Alloy (마그네슘 합금의 크리이프 거동에 표면처리가 미치는 영향)

  • Kang, Dae-Min;An, Jung-O;Kang, Min-Cheol
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.347-353
    • /
    • 2009
  • The apparent activation energy, the applied stress exponent, and rupture life have been measured from creep experiments over the range of $200^{\circ}C$ to $220^{\circ}C$ and the applied stress range of 64MPa to 94MPa. The materials were used AZ31 magnesium alloys treated by plasma electrolytic oxidation of $20{\mu}m$ and $40{\mu}m$ at surface to investigate the its influence on creep behavior, and creep tests were carried out under constant applied stress and temperature. The experimental results showed that the dipper the thickness of surface treatment the higher the activation energy and stress exponent. And the higher temperature and applied stress, the lower stress exponent and activation energy, respectively. Also the dipper the thickness of surface treatment the longer creep rupture time.

Analysis of Residual and Applied Stresses of Thin-walled U tubes (얇은 두께로 된 U 전열관의 잔류응력 및 부하응력 해석)

  • 김우곤;김대환;류우석;국일현;김성청
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.163-169
    • /
    • 1999
  • Residual stresses causing stress corrosion cracking (SCC) of thin-walled steam generator U tubes were investigated. The residual stresses were measured by hole drilling methods, and the applied stresses resulting from the internal pressure and the temperature gradient in the steam generator were estimated theoretically. In U-bent regions, the residual stresses at extrados were induced with compressive stress(-), and its maximum value reached -319MPa in axial direction at $\phi$= $0^{\circ}$ in position. Maximum tensile residual stress of 170MPa was found to be at the flank side at position of $\phi$= $90^{\circ}$, i.e., at apex region. Hoop stress due to the pressure and temperature differences between primary and secondary side were analyzed to be 76 MPa and 45 MPa, respectively.

  • PDF

A Study on the Development of Stress Optic Law Considering Residual Stress in Photoelastic Experiment(II) -Application of Stress Optic Law Considering of Residual Sterss- (잔류응력을 고려한 광탄성실험의 광응력법칙 개발에 관한 연구 (2) -잔류응력을 고려한 광응력법칙의 응용-)

  • 서재국;황재석;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1810-1821
    • /
    • 1995
  • Photoelastic experiment has been used to analyze stress of structure and stress in the vicinity of crack tip etc.. Model experiment such as photoelastic experiment has been restricted by problem of residual stress in the photoelastic model material. They are generated by molding, cutting and time effects etc.. They produce some errors in the results of photoelastic experiment data. In this paper, stress optic law considering residual stress already developed by authors was applied to the stress concentration problem and fracture mechanics. Although the specimen was bad with residual stress, we could obtain good results by using the stress optic law considering residual stress. It was found that the stress optic law of photoelastic experiment could be applied to the stress analysis of bimaterial.

The Relation between Applied Stress and Rebound Hardness Values (부가응력과 반발경도와의 관계)

  • Nahm, S.H.;Kim, S.C.;Jeon, S.B.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.4
    • /
    • pp.318-325
    • /
    • 1995
  • Information of change of hardness values during applying load is needed often to control the quality of metal products efficiently, but the relation between applied stress and hardness has not been established. In this paper the theoretical relation between the rebound hardness and stress was examined briefly and the experiment was performed with some materials. Materials used in test were mild steel(SB41), 7-3 brass and copper, which were widely used in the commercial plants. Hardness was measured during stress applied using the Equo-Tip hardness tester as a kind of rebound hardness tester. Hardness values decreased as tensile stress increased, the decreasing rate was effected by the Young's modulus of each material, and the rebound hardness values showed linear relationship with the applied stress in elastic region.

  • PDF