• Title/Summary/Keyword: Applied Force

Search Result 4,631, Processing Time 0.033 seconds

Design of a Four-axis Force/Moment Sensor for Measuring the Applied Force to Wrist (손목에 가해지는 힘측정을 위한 4축 힘/모멘트센서 설계)

  • Hong, Tae-Kyung;Kim, Gab-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.1011-1016
    • /
    • 2013
  • Patients have the paralysis of their wrists, and can't use of their wrists freely. But their wrists can be recovered by wrist-bending rehabilitation exercise. Professional rehabilitation therapeutists exercise the wrists of patients in hospital. But the wrists of patients have not exercised enough for the rehabilitation, because the therapeutists are much less than patients in number. Therefore, the wrist rehabilitation robot should be developed, and it have to measure the applied force to the patients' wrists for their safety. In this paper, the four-axis force/moment sensor was designed for the wrist rehabilitation robot. As a test results, the interference error of the four-axis force/moment sensor was less than 0.91%. It is thought that the sensor can be used to measure the applied force to the patients' wrists.

The Levitation Mass Method: A Precision Mass and Force Measurement Technique

  • Fujii, Yusaku
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.46-50
    • /
    • 2008
  • The present status and future prospects of the levitation mass method (LMM), a technique for precision mass and force measurement, are reviewed. In the LMM, the inertial force of a mass levitated using a pneumatic linear bearing is used as the reference force applied to the objects being tested, such as force transducers, materials, or structures. The inertial force of the levitated mass is measured using an optical interferometer. We have modified this technique for dynamic force calibration of impact, oscillation, and step loads. We have also applied the LMM to material testing, providing methods for evaluating material viscoelasticity under an oscillating or impact load, evaluating material friction, evaluating the biomechanics of a human hand, and generating and measuring micro-Newton-level forces.

Evaluation of Analytical Method for Detent Spring Force Correction (디텐트 스프링 교정을 위한 해석적방법의 적용성 평가)

  • Kim, Sun-Ho;Kwon, Hyuk-Hong;Park, Kyoung-Taik;Jung, Yong-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.57-63
    • /
    • 1999
  • A thin metal plate such as detent spring has the shape deformation due to the phenomenon of spring back after press machining and heat treatment process. This requires the correction of spring shape and force in final inspection process. To do correction of the shape deformation the impact force is manually applied to the bended part of detent spring after measuring the shape deformation and spring force. To develop the automatic spring force correction system, applied force of occurring plastic deformation must be derived from the experimental method. But frequent change of spring shape and material makes it difficult to accomplish the experimental method to be applied. This paper describes the analytical method for detent spring force correction system is to be substituted for the experimental method. FEM(Finite Element Method) is used to find the boundary value between elastic and plastic deformation in the analytical method. To confirm the validity of the analytical method, the result of two methods is compared each other at various applied force conditions. It shows that the simulation result of the analytical method is consistent with the result of the experimental method within the error bound ${\pm}$5%. The result of this paper is useful for development of the automatic spring correction system and reduction of the complicated and tedious processes involved in experimental method.

  • PDF

Development of Ultrasonic Machine with Force Controlled Position Servo System (가공력 제어 위치 서보 시스템을 이용한 초음파 가공기의 개발)

  • 장인배;이승범;전병희
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.253-261
    • /
    • 2004
  • The machining technology for the brittle materials such as ceramics are applied to the fields of MEMS(micro electromechanical system) by the progress of new machining technologies such as Etching, Diamond machining, Micro drilling, EDM(Electro discharge machining), ECDM(Electro discharge machining), USM(Ultrasonic machining), LBM(Laser beam machining), EBM(Electron beam machining). Especially, the USM technology can be applied to the dieletric brittle materials such as silicon, borosilicate glass, silicon nitride, quartz and ceramics with high aspect ratio. The micro machining system with machining force controlled position servo is developed in this paper and the optimized ultrasonic machining algorithm is constructed by the force controlled position servo control. The load cell is adapted in the force measuring and the servo control algorithm, suit for the ultrasonic machining characteristics, is estabilished with using the PID auto-tunning functions at the PMAC system which is generally adapted in the field of robot industries. The precision force signal amplifier is constructed with high precision operational amplifier AD524. The vacuum adsorption chuck which is made of titanum and internal flow line is engraved, is used in the workpiece fixing. The mahining results by USM shows that there are some deviation between the force command and the actual machining force that the servo control algorithm should be applied in the machining procedures. Therefore, the constant force controlled position servo system is developed for the micro USM system and by the examination machining process in USM, the stable USM system is realized by tracking the average value of machining force.

Relationship between articulation paper mark size and percentage of force measured with computerized occlusal analysis

  • Qadeer, Sarah;Kerstein, Robert;Kim, Ryan Jin-Yung;Huh, Jung-Bo;Shin, Sang-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.1
    • /
    • pp.7-12
    • /
    • 2012
  • PURPOSE. Articulation paper mark size is widely accepted as an indicator of forceful tooth contacts. However, mark size is indicative of contact location and surface area only, and does not quantify occlusal force. The purpose of this study is to determine if a relationship exists between the size of paper marks and the percentage of force applied to the same tooth. MATERIALS AND METHODS. Thirty dentate female subjects intercuspated into articulation paper strips to mark occlusal contacts on their maxillary posterior teeth, followed by taking photographs. Then each subject made a multi-bite digital occlusal force percentage recording. The surface area of the largest and darkest articulation paper mark (n = 240 marks) in each quadrant (n = 60 quadrants) was calculated in photographic pixels, and compared with the force percentage present on the same tooth. RESULTS. Regression analysis shows a bi-variant fit of force % on tooth (P<.05). The correlation coefficient between the mark area and the percentage of force indicated a low positive correlation. The coefficient of determination showed a low causative relationship between mark area and force ($r^2$ = 0.067). The largest paper mark in each quadrant was matched with the most forceful tooth in that same quadrant only 38.3% of time. Only 6 2/3% of mark surface area could be explained by applied occlusal force, while most of the mark area results from other factors unrelated to the applied occlusal force. CONCLUSION. The findings of this study indicate that size of articulation paper mark is an unreliable indicator of applied occlusal force, to guide treatment occlusal adjustments.

THE EFFECTS OF POSTERIOR RETRACTION ON THE DISPLACEMENT OF THE MAXILLA

  • Yoo, Bo-Yeong;Kim, Jong-Chul
    • The korean journal of orthodontics
    • /
    • v.26 no.6
    • /
    • pp.691-703
    • /
    • 1996
  • Three-dimensional finite element model was made from adult skull to find desirable direction of retraction force to treat skeletal class II malocclusion. The retraction force of 400g was applied to the first molar. The direction of the force application was $23^{\circ}$ downward, parallel, $23^{\circ}$ upward and $45^{\circ}$ upward to the occlusal plane. The stress distribution and the displacement within the maxilla were analyzed by three-dimensional finite element method. The findings obtained were as follows: 1. Maxillary first molar was displaced posteriorly and inferiorly in $23^{\circ}$ downward, parallel, $23^{\circ}$ upward retraction but it was displaced posteriorly and superiorly in $45^{\circ}$ upward retraction. 2. ANS, A point and prosthion were moved posteriorly and inferiorly and pterygomaxillary fissure was moved posteriorly and superiorly. Clockwise rotation of maxilla occurred when retraction force was applied. 3. The degree of clockwise rotation of maxilla was greatest when the force was applied $23^{\circ}$ upward to the occlusal plane and was least when the force was applied $23^{\circ}$ downward to the occlusal plane. 4. Large tensile stress appeared in maxillary first molar and alveolar bone and the infraorbital region of maxilla when the force was applied $23^{\circ}$ downward to the occlusal plane. Tensile stress was smaller as the direction of force move upward. 5. Large compressive stress was appeared in maxillary first molar and infraorbital region in $45^{\circ}$ upward case and large compressive stress occurred in the posterior part of maxilla as the retraction force was upward.

  • PDF

A Study on the Shape Finding of Cable-Net Structures Introducing General Inverse Matrix (일반역행열(一般逆行列)을 이용(利用)한 케이블네트 구조물(構造物)의 형상결정에 관한 연구)

  • Sur, Sam-Uel;Lee, Jang-Bok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.1 s.3
    • /
    • pp.75-84
    • /
    • 2002
  • In this study, the 'force density method' for shape finding of cable net structures is presented. This concept is based on the force-length ratios or force densities which are defined for each branch of the net structures. This method renders a simple linear 'analytical form finding' possible. If the free choice of the force densities is restricted by further condition, the linear method is extended to a nonlinear one. The nonlinear one can be applied to the detailed computation of networks. In this paper, the general inverse matrix is introduced to solve the nonlinear equilibrium equation including Jacobian matrix which is rectangular matrix. Several examples for linear and nonlinear analysis applied additional constraints are presented. It is shown that the force density method is suitable for form finding of cable net and the general inverse matrix can be applied to solve the nonlinear equation without Lagrangian factors.

  • PDF

Motor noise removal for determining gait events over treadmill walking using wavelet filter

  • Yeom, Ho-Jun;Selgrade, Brian P.;Chang, Young-Hui;Kim, Jung-Lae
    • International journal of advanced smart convergence
    • /
    • v.1 no.1
    • /
    • pp.48-51
    • /
    • 2012
  • The conventional method for filtering force plate data, low-pass filtering, does not always give accurate results when applied to force data from a custom-made, instrumented treadmill. Therefore, this study compares low-pass filtered data to the same data passed through a wavelet filter. We collected data with the treadmill running. However these include motor noise with ground reaction force at two force plates. We found that he proposed wavelet method eliminated motor noise to result in more accurate force plate data than the conventional low-pass filter, particularly at high speed motor operation. In this study we suggested the convolution wavelet (CNW) which was compared to that of a low-pass filter. The CNW showed better performance as compared to band-pass filtering particularly for low signal-to-noise ratios, and a lower computational load.

ROOT RESORPTION AND BONE RESORPTION BY JIGGLING FORCE IN CAT PREMOLARS (교대성 교정력이 고양이의 치근 흡수 및 치조골 흡수에 미치는 영향)

  • Kim, Young-Hoon;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.24 no.3 s.46
    • /
    • pp.621-630
    • /
    • 1994
  • The purpose of this study was to evaluate root resorption and alveolar bone resorption pattern by jiggling movement. 16 adult cats were divided into 4 groups(6, 12, 18, 24 days). In test side, mesio-distal jiggling force was applied in right maxillary 1st premolar in 3 days cycle In control side, mesial force was applied in left maxillary 1st premolar. Radiographic and histologic observation were performed in 6, 12, 18, 24 days after force application. The results were as follow: 1. Alveolar bone resorption was more severe by jiggling force than by unidirectional force. 2. Root resorption pattern was not different between jiggling force and unidirectional force. 3. Combined pattern of bone resorption and new bone formation appeared in jiggling group. 4. New bone formation began to appear at periapical area of jiggling group after 24 days, because alveolar bone resorption was severe and extrusion resulted.

  • PDF

Analysis of Offshore Wind Tower against Impulsive Breaking Wave Force by P-Y Curve

  • Kim, Nam-Hyeong;Koh, Myung-Jin
    • Journal of Navigation and Port Research
    • /
    • v.39 no.5
    • /
    • pp.385-391
    • /
    • 2015
  • In offshore, various external forces such as wind force, tidal current and impulsive breaking wave force act on offshore wind tower. Among these forces, impulsive breaking wave force is especially more powerful than other forces. Therefore, various studies on impulsive breaking wave forces have been carried out, but the soil reaction are incomplete. In this study, the p-y curve is used to calculate the soil reaction acting on the offshore wind tower when an impulsive breaking wave force occurs by typhoon. The calculation of offshore wind tower against impulsive breaking wave force is applied for the multi-layered soil. The results obtained in this study show that although the same wave height is applied, the soil reaction generated by impulsive breaking wave force is greater than the soil reaction generated by wave force.