• Title/Summary/Keyword: Applied Field

Search Result 12,687, Processing Time 0.043 seconds

Design and fabrication of race-track type field coil for the high temperature superconduction generator

  • Baik, S.K.;Jo, Y.S.;Ha, H.S.;Lee, E.Y.;Jeong, D.Y.;Kwon, Y.K.;Ryu, K.S.;Sohn, M.H.
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.248-251
    • /
    • 2000
  • The fabrication and characteristics of HTS race-track type field coil for generators was carried out. Field coils are composed of 3 pancake coils wound by 37-filamental Bi-2223/Ag-alloy tapes. The winding machine is horizontal type. The critical currents (I$_c$) of the superconducting tapes were measured with variation of bending strain and external magnetic fields. I$_c$ of both whole field coils and 3 pancake coils were measured as a function of temperature. At 77K under the self-field, I$_c$ of whole field coils was 12A, while in the case of middle pancake coil, I$_c$ was 15A. The distribution of magnetic field B was obtained, using 3-D FEM. Our simulation showed that maximums of B${\bot}$A in x-y plane were locally distributed in both the upper and the lower coils. In addition, the fabrication processes and the characteristics of field coil are described.

  • PDF

Optical Measurement of Magnetic Anisotropy Field in Nanostructured ferromagnetic Thin Films

  • Whang, Hyun-Seok;Yun, Sang-Jun;Moon, Joon;Choe, Sug-Bong
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.8-10
    • /
    • 2015
  • The magnetic anisotropy field plays an important role in spin-orbit-torque-induced magnetization dynamics with electric current injection. Here, we propose a magnetometric technique to measure the magnetic anisotropy field in nanostructured ferromagnetic thin films. This technique utilizes a magneto-optical Kerr effect microscope equipped with two-axis electromagnets. By measuring the out-of-plane hysteresis loops and then analyzing their saturated magnetization with respect to the in-plane magnetic field, the magnetic anisotropy field is uniquely quantified within the context of the Stoner-Wohlfarth theory. The present technique can be applied to small nanostructures, enabling in-situ determination of the magnetic anisotropy field of nanodevices.

A Study on the Formation of Reversed Field configuration stability with Radio Rotating Field (고주파 회전자계를 이용한 역전자계 배위 안정성연구)

  • Kim, Won-Sop;Hwang, Jong-Sun;Kim, Jeong-Man;Kim, Young-Min
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2187-2189
    • /
    • 2005
  • It is widely know that one of the most important tasks is the research of plasma for the purpose o nuclear fusion, is to make a stable confinement of high ${\beta}$ value plasma. And, for making the stable confinement, pinch p1-asma produced by reversed field has been mainly studied yet. Magnetic field has been used to hold plasma at high temperature for a long time. Reverse field has shown unstable process. Using ratio frequency, the author could control the instability of the process and formed a stable erversed field. Inthe experiment let a reversed field configuration from by adding-Bias field in advance.

  • PDF

Investigation of Acoustic Emission Signals in Racetrack Superconducting Field Winding Coils (레이스트랙형 초전도계자코일의 AE 신호 특성평가)

  • Sohn, M.H.;Baik, S.K.;Ko, R.K.;Lee, E.Y.;Bae, J.H.;Kwon, Y.K.;Ryu, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.186-188
    • /
    • 1998
  • Acoustic emission monitoring on two racetrack superconducting field winding coil was performed during excitation and quenches to diagnose the integrity of the field winding coils. Two field windings were not impregnated with epoxy The results confirm that the acoustic emission signals are mainly due to conductor motions which cause premature quenching of the winding. The quench current of modified racetrack type field winding coil (Type B) are more higher than that of conventional field winding coil (Type A).

  • PDF

Development and Evaluation of Cold-applied Crack Sealant for Pavement Maintenance (도로포장 보수용 상온식 균열실링 재료의 개발 및 평가)

  • Kim, Yeong Min;Jeong, Kyu Dong;Lee, Kang Hoon;Im, Jeong Hyuk
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.45-53
    • /
    • 2017
  • PURPOSES: The objectives of this study are to develop a new cold-applied crack sealant and to evaluate its properties and field applicability by comparing with other conventionally used crack sealants. METHODS : A new cold-applied crack sealant was developed by using neoprene latex to improve material properties. The fundamental properties such as viscosity, residue %, penetration, and softening point of the developed crack sealant were tested by TxDOT criteria to evaluate crack sealing capability. Moreover, the performance of the developed cold-applied crack sealant was evaluated under both laboratory and field conditions. In the laboratory, the bond property was evaluated using the developed cold-applied crack sealant and conventional hot-applied crack sealant by the bond-properties test standardized under ASTM D 6690. In the field, test sections were constructed on three areas: a trunk road, bus-only lane, and motorway, with the developed crack sealant and three conventional crack sealants. After construction, early field-inspection was performed on the test sections. RESULTS AND CONCLUSIONS : Overall, the developed cold-applied crack sealant demonstrates reasonable storage stability, durability, and bond property compared to conventional hot-applied crack sealants. From the test sections, it was established that the developed cold-applied crack sealant does not pose construction issues. Moreover, the early performance was verified through field inspection. However, as the field inspection was conducted a week after the construction, it is necessary to conduct an inspection of performance from a long-term point of view.

Magnetic field effect on the positive column of fluorescent lamp (형광등 Positive column에 대한 자장인가 효과)

  • 지철근;김창종
    • 전기의세계
    • /
    • v.31 no.3
    • /
    • pp.197-203
    • /
    • 1982
  • The effects on the characteristics of 20-W fluorescent lamp were studied when applying magnetic field to its positive column. First, when the direction of the magnetic field is axial, i.e., along the lamp, if the magnitude of the field is stronger than the critical field, lamp voltage is increased, lamp current decreased, luminous flux increased, starting voltage decreased, as increasing the applied magnetic field. At the magnetic flux density is 130 gauss, luminous flux is increased to about 6 percents and starting voltage is increased to about 45 percents. Second, when the direction of the magnetic field is transverse to the lamp axis, as increasing the applied magnetic field, lamp voltage is increased, lamp current decreased, luminous flux increased and starting voltage is nearly constant, but the rates of increase or decrease of this case is different from those of the first. At the magnetic flux density is 300 gauss, luminous flux is increased about 45 percents. In both cases, electric power dissipated by lamps is the same as that of the lamp which magnetic field is not applied to.

  • PDF

Development of a Method for Improving the Electric Field Distribution in Patients Undergoing Tumor-Treating Fields Therapy

  • Sung, Jiwon;Seo, Jaehyeon;Jo, Yunhui;Yoon, Myonggeun;Hwang, Sang-Gu;Kim, Eun Ho
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1577-1583
    • /
    • 2018
  • Tumor-treating fields therapy involves placing pads onto the patient's skin to create a low- intensity (1 - 3 V/cm), intermediate frequency (100 - 300 kHz), alternating electric field to treat cancerous tumors. This new treatment modality has been approved by the Food and Drug Administration in the USA to treat patients with both newly diagnosed and recurrent glioblastoma. To deliver the prescribed electric field intensity to the tumor while minimizing exposure of organs at risk, we developed an optimization method for the electric field distribution in the body and compared the electric field distribution in the body before and after application of this optimization algorithm. To determine the electric field distribution in the body before optimization, we applied the same electric potential to all pairs of electric pads located on opposite sides of models. We subsequently adjusted the intensity of the electric field to each pair of pads to optimize the electric field distribution in the body, resulting in the prescribed electric field intensity to the tumor while minimizing electric fields at organs at risk. A comparison of the electric field distribution within the body before and after optimization showed that application of the optimization algorithm delivered a therapeutically effective electric field to the tumor while minimizing the average and the maximum field strength applied to organs at risk. Use of this optimization algorithm when planning tumor-treating fields therapy should maintain or increase the intensity of the electric field applied to the tumor while minimizing the intensity of the electric field applied to organs at risk. This would enhance the effectiveness of tumor-treating fields therapy while reducing dangerous side effects.

Dielectric properties with variation of doped mount $ZrO_2$ of BSCT ceramics ($ZrO_2$첨가량에 따른 BSCT 세라믹의 유전특성)

  • 조현무;이성갑;이영희;배선기
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.153-156
    • /
    • 2001
  • (Ba$_{0.6-x}$Sr$_{0.4}$Ca$_{x}$)TiO$_3$ (x=0.10, 0.15, 0.20) ceramics were fabricated by the mixed-oxide method and their dielectric properties were investigated with variation of composition ratio, doped ZrO$_2$ (0.5, 1.0, 1.5, 2.0, 3.0 wt%) and sintered at 145$0^{\circ}C$. The dielectric constant and loss of the x=0.10 specimen applied field were 19.86 and 0.302 % at 0 V/cm, and 25.937 and 0.339 % at 300 V/cm, respectively. Dielectric constant were increased with increased applied field and decreased with increased frequency, and dielectric loss were within 0.1% at applied 800 MHz, respectively. all specimens showed fairly good applied field. Although, dielectric constant and loss of all specimen showed to tend of nearly the same. same.

  • PDF

Fabrication of YBCO Superconducting Thick Film by Use of Lateral Shaky Field Assisted EPD Method (측면진동보조전계 전기영동 전착방식을 적용한 YBCO 초전도 후막의 제작)

  • 소대화;전용우
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.1041-1046
    • /
    • 2003
  • In order to improve the surface uniformity and the conduction properties of the fabricated YBCO thick films, a system that applies alternating field vertically to the EPD field has been developed for the first time and applied to the electrophoretic deposition process. The applied alternating electric field, so called Shaky Alternating Assisted Field, caused a force to be exerted on each YBCO particle and resulted in a shaking of the particle in the direction of applied electric field, accomplishing a uniform particle orientation. The usual commercial electrical power was used for the vertically applied alternating voltage and the induced electric field was 25-120 V/cm at 60Hz. The thick film fabricated by the method developed in this paper showed better surface uniformity without crack and porosity and improved film characteristics such as critical temperature (Tc,zero = 90 K) and critical current density (2354 A/$\textrm{cm}^2$), Therefore, it is expected that the shaky-aligned electrophoretic deposition method can be used to fabricate superconductor films through a simpler process and at less expense.

Thermo-Field emission in silicon nanomembrane ion detector for mass spectrometry (실리콘 나노 박막의 열-전계 방출효과를 이용한 분자 질량분석)

  • Park, Jong-Hoo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.586-591
    • /
    • 2013
  • This paper describes the characteristics of thermo-field emission in a freestanding silicon nanomembrane under ion bombardment with various thermal and field conditions. The thermal effect and field effect in thermo-field emission in silicon nanomembrane are investigated by varying kinetic energy of ions and electric field applied to the silicon nanomembrane surface, respectively. We found that thermo-field emission increases linearly as the electric field increases, when the electric field intensity is lower than the threshold. The thermo-field emission (schottky effect) increases proportionally to the power of temperature, which agree well with the predictions of a thermo-field emission model.