• Title/Summary/Keyword: Applied Behavior Analysis

Search Result 2,808, Processing Time 0.033 seconds

Composite Discharge Capacity Analysis of Vertical Drain Installed in Ground (연직배수재가 타설된 지반의 복합통수능 해석)

  • Kim, Chang-Young;Kwak, No-Kyung;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1167-1174
    • /
    • 2008
  • Vertical drain method, which is one of the soft ground improvement methods, shorten s drain path to accelerate consolidation process and is applied in many sites. At a recent, composite discharge capacity experiment that analyze discharge amount by consolidation behavior with overburden pressure of soft ground in laboratory, simulates similarly with actuality. Geotechnical engineering problems such a s soft ground improvement are solved by numerical analysis by development of computer and numerical analysis techniques. Numerical analysis does that result is contrary by user's inexperience for choice of constitution model and application of analysis method. Therefore, this thesis experiments on composite discharge capacity test and study discharge capacity of drain and consolidation behavior of soft ground installed prefabricated vertical drain boards. Also, This thesis studied reasonable input parameters and constitution model by compare results of composite discharge capacity test and numerical analysis using PLAXIS that is 2D finial element numerical analysis program.

  • PDF

3D Numerical Simulation of Pullout Behavior of FRP Embedded in Concrete using RBSN Method (RBSN 방법을 사용한 콘크리트에 삽입된 FRP rod의 Pull-out거동의 3D 수치 Simulation)

  • Kim, Jang-Ho;Li, Jing;Tran, Tuan Kiet;Hong, Jong-Suk;Kim, Yun-Ho;Lee, Gyeong-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.365-368
    • /
    • 2006
  • RBSN Method, Rigid-Body-Spring Network Method, is a structural analysis method that overcomes the problems faced in FEM analysis of concrete or crack forming structures. In RBSN, irregular lattices are used to model structural components consisting of bulk material, curvilinear reinforcements, and their interfaces. Because reinforcements and their interfaces in the bulk material are freely positioned, meshing is irrespective of the geometry of the representing bulk material. In this paper, RBSN method of 3D is applied in simulating the pull-out test of FRP (Fiber Reinforced Polymer) embedded in concrete. The comparison of analysis results to experimental results shows that RBSN method simulates the shear-slip behavior very precisely. From the analysis results, 3D RBSN method is proven to be an effective and accurate analysis method for concrete structural analysis. Also, the results show that RBSN method can be a potential analysis method for concrete structures that can replace the current FEM analysis.

  • PDF

Risk Evaluation of Slope Using Principal Component Analysis (PCA) (주성분분석을 이용한 사면의 위험성 평가)

  • Jung, Soo-Jung;Kim, -Yong-Soo;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.10
    • /
    • pp.69-79
    • /
    • 2010
  • To detect abnormal events in slopes, Principal Component Analysis (PCA) is applied to the slope that was collapsed during monitoring. Principal component analysis is a kind of statical methods and is called non-parametric modeling. In this analysis, principal component score indicates an abnormal behavior of slope. In an abnormal event, principal component score is relatively higher or lower compared to a normal situation so that there is a big score change in the case of abnormal. The results confirm that the abnormal events and collapses of slope were detected by using principal component analysis. It could be possible to predict quantitatively the slope behavior and abnormal events using principal component analysis.

Behavior characteristics of Light-Weight Pavement Using Centrifuge Test (원심모형실험을 이용한 경량포장체의 거동특성)

  • Kim, Seong-Kyum;Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5176-5183
    • /
    • 2013
  • In general, Korean Lightweight Concrete used Heat insulating material for building and filler for civil construction, backfill material for tunnel, office floor fillers, lightweight blocks and so on. These expand the range of use ALC(autoclaved lightweight concrete) on the soft-ground at regular intervals during road construction by installing piles used as substrates for the process is under study. In this study, behavior characteristics on the soft-ground of pavement analysis was used to test the geo-Centrifuge. Prototype pavement reduced to 1/30 slab form of the composition as kaolinite model tests were conducted in the soft ground. Pile Arrangement (having 36 component pile with an array of $3{\times}12$) was used to group of piles. Tests of gravity 30 level the centrifugal force acting Light-weight pavement models. Based on the Prototype pavement of the behavior characteristics of pavement behavior characteristics were estimated. FMA analysis of the 10 times as big 39.4kg (actual load 35 ton) of the lateral load is applied to the case 7.8mm (actual behavior 23.4mm) behavior was fine.

An Analysis of Domestic Research Tendencies of Environmental Psychology and Behavior Studies in Architecture and Interior Design Fields - Focus on the Theses of Architecture and Interior Design Institutes - (국내 건축 및 실내디자인 분야의 환경심리행태 연구경향 분석 - 건축 및 실내디자인학회의 연구내용을 중심으로 -)

  • Choi, Sang-Hun
    • Korean Institute of Interior Design Journal
    • /
    • v.17 no.5
    • /
    • pp.150-156
    • /
    • 2008
  • The 'Environmental Psychology and Behavior Studies' which started from the purpose of "Building the comfortable environment for people", is one of the most essential research area in architecture and intoner design field because of the basis of humanbeing matters. As the development of science and industries, the social circumstances have been more complicated and diversified. As a result, humanbeing require much humanized and high level of quality in space design as well as environmental design. In case of domestic research situation, the research of environmental psychology and behavior studies in architecture and interior design fields, haven't been applied fully in their potential abilities due to the shortage of research history, complexity of humanbeing researches and the vagueness of studies as a major fields. Thus, my purpose of studying is to analizing the previous research tendencies focus on the domestic thesis since 1980 to 2006 from the related research Institutes. Final findings are as follows ; 1. Steadily increasing tile interest ratio of the research field of environmental psychology and behavior studies 2. Concentration of research target spaces are higher from the residential > elderly facilities > educational > and medical spaces. 3. The preference of research theme showed the environmental psychology fundamentals > behavior studies > general studies of environmental psychology > emotional engineering > human factors engineering. 4. Results of crossing analysis ; 1)Residential spaces were the main spaces for main research theme. 2)Main theme used in target spaces were 'environmental psychology fundamentals' and "behavior studies'. 3)Main research methods for the most target spaces were 'sample research' methods.

Workability and compressive behavior of PVA-ECC with CNTs

  • Lee, Dongmin;Lee, Seong-Cheol;Yoo, Sung-Won
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.311-320
    • /
    • 2022
  • TBM concrete segment requires a higher level of material properties compared to general concrete structures due to difficulties in maintenance and uncertainty in ground conditions. In this regard, recently, as one of the methods to achieve enhancement effect on concrete strength, many researchers have been focusing on adding CNTs to concrete mixture. However, even CNTs do not compensate the weakness that concrete exhibits brittle behavior after cracking. Separately, over the past few decades, a number of studies have been conducted on fiber reinforced concrete which exhibits ductile behavior due to fibers bridging cracks. However, only limited studies have been conducted to employ the advantages of the both materials together. In this study, an experimental program has been conducted to investigate the effect of CNTs on the workability and the compressive behavior of PVA-ECC which exhibits ductile tensile behavior with well-distributed cracks even without a conventional rebar. In addition to the compression test, SEM analysis has been also conducted for detailed investigation in the microstructure. The variable was the CNTs mix ratio, which were set to 0.00, 0.25, and 0.50 wt.% to the binding materials. It was observed though the test results that as the CNTs mix ratio increased, the workability considerably decreased with the reduced slump and slump flow. From the compression test results, it was also investigated that the compressive behavior was improved since the compressive strength, the strain corresponding to the compressive strength, and the modulus of elasticity increased with an increase of CNTs mix ratio. The contents of this paper will be useful for relevant research areas such as fiber reinforced concrete with CNTs which might be applied for high performance TMB concrete segments.

A Study on the Hierarchic Analysis of Spatial Function in Ubiquitous Housing (유비쿼터스 주거공간의 기능적 위계성 분석에 관한 연구)

  • Lee, Sang-Hwa;Choi, Dong-Sik
    • Journal of the Korean housing association
    • /
    • v.18 no.3
    • /
    • pp.19-29
    • /
    • 2007
  • This study is aimed at interpreting into changes and characters of function applied into quantative analysis in ubiquitous house. Digital technology being introduced into architectural fields, It applied expansively from design and construction to user's convenience. The application of digital technology is presented to various change like effectiveness and exactness in design and function of space, which is overlayed digital space to physical space beyond the extent of receiving human needs in physical space. In ubiquitous house, digital technologies are supplied to function coordinated with life, appreciating into positional informations of human and materials, spatial informations. Ubiquitous house is comparably effective into funtional expansion, user's convenience, safty, which, for the future, is going to using on housing of high performance encouraging the application of advanced technology. Therefore this study is classified into human behaviors, functions, performances and characters of digital system in ubiquitous house, which being established into the relation of elements, is interpreted numerically into functional changes and charats being applied to ARM.

Finite element implementation of a steel-concrete bond law for nonlinear analysis of beam-column joints subjected to earthquake type loading

  • Fleury, F.;Reynouard, J.M.;Merabet, O.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.1
    • /
    • pp.35-52
    • /
    • 1999
  • Realistic steel-concrete bond/slip relationships proposed in the literature are usually uniaxial. They are based on phenomenological theories of deformation and degradation mechanisms, and various pull-out tests. These relationships are usually implemented using different analytical methods for solving the differential equations of bond along the anchored portion, for particular situations. This paper justifies the concepts, and points out the assumptions underlying the construction and use of uniaxial bond laws. A finite element implementation is proposed using 2-D membrane elements. An application example on an interior beam-column joint illustrates the possibilities of this approach.

Modified Split Panel Method Applied to the Analysis of Cavitating Propellers

  • Pyo, S.W.;Suh, J.C.
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.2
    • /
    • pp.13-23
    • /
    • 2000
  • A low-order potential based boundary element method is applied to the prediction of the flow around the cavitating propeller in steady or in unsteady inflow. For given cavitation number, the cavity shape is determined in an iterative manner until the kinematic and the dynamic boundary conditions are both satisfied on the approximate cavity boundary. In order to improve the solution behavior near the tip region, a hyperboloidal panel geometry and a modified split panel method are applied. The method is then extended to include the analysis of time-varying cavitating flows around the propeller blades via a time-step algorithm in time domain. In the method, the steady state oscillatory solution is obtained by incremental stepping in the itme domain. Finally, the present method is validated through comparison with other numerical results and experimental data.

  • PDF

Resistance Model for Reliability Analysis of Existing Steel Girder Bridges (강거더 교량의 신뢰성해석을 위한 저항모델 개발)

  • Eom, Jun Sik
    • Journal of Applied Reliability
    • /
    • v.13 no.4
    • /
    • pp.241-252
    • /
    • 2013
  • Because of financial and safety concerns, there are needs for more accurate prediction of bridge behavior. Underestimation of the bridge load carrying capacity can have serious economic consequences, as deficient bridges must be repaired or rehabilitated. Therefore, the knowledge of the actual bridge behavior under live load may lead to a more realistic calculation of the load carrying capacity and eventually this may allow for more bridges to remain in service with or without minor repairs. The presented research is focused on the reliability evaluation of the actual load carrying capacity of existing bridges based on the field testing. Seventeen existing bridges were tested under truck load to confirm their adequacy of reliability. The actual response of existing bridge structures under live load is measured. Reliability analysis is performed on the selected representative bridges designed in accordance with AASHTO codes for bridge component (girder). Bridges are first evaluated based on the code specified values and design resistance. However, after the field testing program, it is possible to apply the experimental results into the bridge reliability evaluation procedures. Therefore, the actual response of bridge structures, including unintentional composite action, partial fixity of supports, and contribution of nonstructural members are considered in the bridge reliability evaluation. The girder distribution factors obtained from the tests are also applied in the reliability calculation. The results indicate that the reliability indices of selected bridges can be significantly increased by reducing uncertainties without sacrificing the safety of structures, by including the result of field measurement data into calculation.