• Title/Summary/Keyword: Applied Behavior Analysis

Search Result 2,808, Processing Time 0.034 seconds

Effect of La in Partial Oxidation of Methane to Hydrogen over M(1)-Ni(5)/AlCeO3 (M = La, Ce, Y) Catalysts (M(1)-Ni(5)/AlCeO3 (M = La, Ce, Y) 촉매상에서 수소 제조를 위한 메탄의 부분산화반응에서 La의 효과)

  • Seo, Ho Joon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.757-761
    • /
    • 2019
  • The catalytic yields of POM to hydrogen over M(1)-Ni(5)/AlCeO3 (M = La, Ce, Y) were investigated using a fixed bed flow reactor under atmosphere. The crystal phase behavior of reduced La(1)-Ni(5)/AlCeO3 catalysts before and after the reaction were studied via XRD analysis. FESEM and EDS analyses were further performed to show the uniformed distribution of La, Ni, and Ce metal particles on the catalyst surface. XPS results showed O2-, O22- species and metal ions such as Ce3+, Ce4+, La3+ and Ni2+ etc. were on the catalyst surface. When 1 wt% of La was added to Ni(5)/AlCeO3 catalyst, Ni2p3/2 and Ce3d5/2 increased 52.7 and 6.3%, respectively. The yield of hydrogen on the La(1)-Ni(5)/AlCeO3 catalyst was 89.1%, which was much better than that of M(1)-Ni(5)/AlCeO3 (M = Ce, Y). As Ce4+ ions of CeO2 produced by the reaction of AlCeO3 with oxygen were substitute to La3+, it made oxygen vacancies in the lattice and further improved the hydrogen yield by increasing the dispersion of Ni atoms with strong metal-support interaction (SMSI) effect.

A Study on the Structural Performance of Hybrid Studs Subjected to Compression and Torsion (압축과 비틂을 동시에 받는 복합스터드의 구조적 성능에 관한 연구)

  • Jung, Yun Jin;Kwon, Young Bong;Kwak, Myong Keun;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.543-551
    • /
    • 2006
  • Cold-formed steel studs that are being used as load-bearing members of wall panels for steel houses have a problem with their insulation due to the heat bridging of their web. Some additional thermal insulating materials should be used. To solve this problem, the new-concept hybrid stud, which consists of a galvanized steel sheet (t = 1.0 m - 12.0 m) and a GFRP panel (t = 4.0-6.0 mm), has recently been developed. An investigation on the structural behavior and the strength capacity of this new hybrid stud has been conducted so that it can be used in load-bearing wall panels of residential buildings. This paper describes the axial compression-torsion test results of the hybrid studs under both axial compression and torsion using ATTM. The main factors of the test were the stud length, the magnitude of the initial compressive force, and the loading method of the monotonic or cyclic loading. The torsion was applied increasingly while the initial compression was kept constant to the failure of the hybrid section. The advanced analysis results obtained form the finite element procedure that considered the material properties of the high-strength galvanized steel and the GFRP were compared with the test results for verification.

Effect of the Tidal Sea Level Change on the Unconsolidated Sediment in Gwangyang Bay (광양만 조석 해수면 변동의 미고결 퇴적층에 대한 영향)

  • CHO Tae-Chin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.1
    • /
    • pp.9-20
    • /
    • 1991
  • The characteristics of the unconsolidated sediment in Gwangyang bay was analyzed from the core samples. The porosity of the sediment showed irregular variation with respect to the sedimentation depth, which indicated that sediment weight-induced consolidation was not significant. Numerical analysis for the mechanical and hydraulic behavior of the unconsolidated sediment due to the tidal sea level change was processed. Because of the delayed excessive pore pressure change in the very low permeable mud medium, the magnitude of the excessive pore pressure for the duration of the minimum sea level exceeded the total stress from the sea water weight, which resulted in the negative (tensional) effective stress below the top surface. The in-situ effective stress, obtained by superposing the tensional effective stress on the solid weight-induced compressive stress, was remained to be tensile (quick-sand condition) near the top surface of the mud deposit. The occurrence of the quirk-sand condition provided a theoretical evidence for the insignificant consolidation and the irregular porosity variation of the sediment. When the sand is distributed on the top surface of the mud layer, the quick-sand condition occurred below the sandy mud layer and the downward movement of sand particles was facilitated.

  • PDF

Effect of Deposition Parameter and Mixing Process of Raw Materials on the Phase and Structure of Ytterbium Silicate Environmental Barrier Coatings by Suspension Plasma Spray Method (서스펜션 플라즈마 스프레이 코팅법으로 제조된 Ytterbium Silicate 환경차폐코팅의 상형성 및 구조에 미치는 증착인자 및 원료혼합 공정의 영향)

  • Ryu, Ho-lim;Choi, Seon-A;Lee, Sung-Min;Han, Yoon-Soo;Choi, Kyun;Nahm, Sahn;Oh, Yoon-Suk
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.437-443
    • /
    • 2017
  • SiC-based composite materials with light weight, high durability, and high-temperature stability have been actively studied for use in aerospace and defense applications. Moreover, environmental barrier coating (EBC) technologies using oxide-based ceramic materials have been studied to prevent chemical deterioration at a high temperature of $1300^{\circ}C$ or higher. In this study, an ytterbium silicate material, which has recently been actively studied as an environmental barrier coating because of its high-temperature chemical stability, is fabricated on a sintered SiC substrate. $Yb_2O_3$ and $SiO_2$ are used as the raw starting materials to form ytterbium disilicate ($Yb_2Si_2O_7$). Suspension plasma spraying is applied as the coating method. The effect of the mixing method on the particle size and distribution, which affect the coating formation behavior, is investigated using a scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), and X-ray diffraction (XRD) analysis. It is found that the originally designed compounds are not effectively formed because of the refinement and vaporization of the raw material particles, i.e., $SiO_2$, and the formation of a porous coating structure. By changing the coating parameters such as the deposition distance, it is found that a denser coating structure can be formed at a closer deposition distance.

Synthesis of Fluorine Modified Polyurethane and Surface Modification (불소 변성 폴리우레탄의 합성과 표면 개질)

  • Lim, Chul Hwan;Choi, Hee Sung;Noh, Si Tae
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.913-916
    • /
    • 1999
  • Fluorine modified diisocyanate(FMD) was synthesized from tris(6-isocyanatohexyl)isocyanurate(TIHI) and N-ethyl-N-2-hydroxyethyl-perfluorooctanesulfonamide(HFA). Fluorine modified polyurethane(FMPU) was also synthesized from FMD and poly(tetramethylene) glycol(PTMG). Modified polyurethanes were made by blending FMPU into the polyester type base polyurethane(BPU). Surface and thermal properties of the blended BPU film was measured by contact angle measurement and DSC. As the amounts of FMPU was increased from 0 wt % to 1 wt %, the surface energy was dramatically decreased from 47.82 dyne/cm to 17.64 dyne/cm. But we observed little change of the contact angle with further increase in the amount of the FMPU up to 10 wt %. The data meant that the surface of the blended polyurethanes was hydrophobic due to the surface arrangement of the fluorine containing moiety in FMPU. Phase separation was induced by the incompatibility of FMPU and BPU for the samples having over 5 wt % of FMPU. The thermal analysis data of these samples showed the thermal behavior of the FMPU itself.

  • PDF

Bond Characteristics at the Interface between HMA Surface and RCC Base (아스팔트 표층과 RCC 기층 계면에서의 부착특성 연구)

  • Hong, Ki;Kim, Young Kyu;Bae, Abraham;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.37-46
    • /
    • 2017
  • PURPOSES : A composite pavement utilizes both an asphalt surface and a concrete base. Typically, a concrete base layer provides structural capacity, while an asphalt surface layer provides smoothness and riding quality. This pavement type can be used in conjunction with rollercompacted concrete (RCC) pavement as a base layer due to its fast construction, economic efficiency, and structural performance. However, the service life and functionality of composite pavement may be reduced due to interfacial bond failure. Therefore, adequate interfacial bonding between the asphalt surface and the concrete base is essential to achieving monolithic behavior. The purpose of this study is to investigate the bond characteristics at the interface between asphalt (HMA; hot-mixed asphalt) and the RCC base. METHODS : This study was performed to determine the optimal type and application rate of tack coat material for RCC-base composite pavement. In addition, the core size effect, temperature condition, and bonding failure shape were analyzed to investigate the bonding characteristics at the interface between the RCC base and HMA surface. To evaluate the bond strength, a pull-off test was performed using different diameters of specimens such as 50 mm and 100 mm. Tack coat materials such as RSC-4 and BD-Coat were applied in amounts of 0.3, 0.5, 0.7, 0.9, and $1.1l/m^2$ to determine the optimal application rate. In order to evaluate the bond strength characteristics with temperature changes, a pull-off test was carried out at -15, 0, 20, and $40^{\circ}C$. In addition, the bond failure shapes were analyzed using an image analysis program after the pull-off tests were completed. RESULTS : The test results indicated that the optimal application rate of RSC-4 and BD-Coat were $0.8l/m^2$, $0.9l/m^2$, respectively. The core size effect was determined to be negligible because the bond strengths were similar in specimens with diameters of 50 mm and 100 mm. The bond strengths of RSC-4 and BD-Coat were found to decrease significantly when the temperature increased. As a result of the bonding failure shape in low-temperature conditions such as -15, 0, and $20^{\circ}C$, it was found that most of the debonding occurred at the interface between the tack coat and RCC surface. On the other hand, the interface between the HMA and tack coat was weaker than that between the tack coat and RCC at a high temperature of $40^{\circ}C$. CONCLUSIONS : This study suggested an optimal application rate of tack coat materials to apply to RCC-base composite pavement. The bond strengths at high temperatures were significantly lower than the required bond (tensile) strength of 0.4 MPa. It was known that the temperature was a critical factor affecting the bond strength at the interface of the RCC-base composite pavement.

Analytical Study of Net Section Fracture in Special Concentrically Braced Frames (중심가새골조의 순단면 파단에 관한 해석적 연구)

  • Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • Failure modes result in fracture or tearing, which may cause deterioration of resistance and reduction of inelastic deformation capacity. The potential failure modes for Special Concentrically Braced Frames (SCBFs) include fracture or tearing of the brace, net section fracture of the brace or gusset plate, fracture of the gusset plate welds, shear fracture of the bolts, block shear, excessive bolt bearing deformation, and buckling of the gusset plate. HSS tubular braces are commonly used in SCBFs, and net section fracture of the tubular brace may also occur through the brace net section at the end of the slot cut into the tube to slip over the gusset plate. This failure mode is categorized as a tension failure mode, and may cause dramatic loss of resistance and brittle behavior. Net section reinforcement is required according to AISC design specifications (AISC 2001). In this paper, the need to reinforce the net section area was discussed. Initially, the results of the net section fracture tests done by the University of California in Berkeley were presented with the modeling of these tests using FE models. To investigate the possibility of net section fracture in an actual frame, the slot end hole model was adapted to the frame FE model, and alternate near-fault histories were applied with tension-dominated cycles, since previous analyses showed that loading history was the most critical factor in net section fracture. The need for this reinforcement (cover plate) and the tension-dominated near-fault history were investigated.

Diversion Rate Estimation Model for Unexperienced Transportation Mode by Considering Maximum Willingness-to-pay: A Case Study of Personal Rapid Transit (최대 지불의사액을 고려한 미경험 교통수단의 전환율 추정모형: Personal Rapid Transit 사례를 중심으로)

  • Yu, Jeong Whon;Choi, Jung Yoon
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.3
    • /
    • pp.33-44
    • /
    • 2013
  • Personal Rapid Transit(PRT) has emerged as a promising transportation mode for transit-oriented sustainable communities. In this study, an alternative design of questionnaire survey is proposed in order to capture traveler's perception of an unexperienced transportation mode. This study aims at predicting the mode choice diversion behavior of potential PRT users who do not have experience of using it previously, considering their willingness-to-pay. The proposed model was applied to predict an aggregate forecast of PRT patronage for the city of Songdo where PRT is considered to be constructed. For validation of the proposed model, the price elasticity of PRT demand was analyzed, compared with existing models. The analysis results suggest that the proposed design of questionnaire survey is able to capture respondents' attitude and perception to unexperienced transportation mode in an effective manner. Also, they show that the proposed diversion rate model is more realistic than existing models in explaining the effects of users' willingness-to-pay for predicting PRT patronage.

Development of a Workload Assessment Index Based on Analyzing Driving Patterns (운전자 주행패턴을 반영한 작업부하 평가지표 개발)

  • KIM, Yunjong;LEE, Seolyoung;CHOI, Saerona;OH, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.6
    • /
    • pp.545-556
    • /
    • 2017
  • Various assessment indexes have been developed and utilized to evaluate the driver workload. However, existing workload assessment indexes do not fully reflect driving habits and driving patterns of individual drivers. In addition, there exists significant differences in the amount of workload experienced by a driver and the ability to overcome the driver's workload. To overcome these limitations associated with existing indexes, this study has developed a novel workload assessment index to reflect an individual driver's driving pattern. An average of the absolute values of the steering velocity for each driver are set as a threshold value in order to reflect the driving patterns of individual drivers. Further, the sum of the areas of the steering velocities exceeding the threshold value, which is defined as erratic steering area (ESA) in this study, was quantified. The developed ESA index is applied in evaluating the driver workload of manually driven vehicles in automated vehicle platooning environments. Driving simulation experiments are conducted to collect drivers' responsive behavior data which are used for exploring the relationship between the NASA-TLX score and the ESA by the correlation analysis. As a result, ESA is found to have the greatest correlation with the NASA-TLX score among the various driver workload evaluation indexes in the lane change scenario, confirming the usefulness of ESA.

Deterioration Diagnosis and Conservation Treatment of the Jincheon Sagongnimaaeyeoraeipsang (Stone Relief of Standing Buddha in Sagok-ri), Korea (진천 사곡리 마애여래입상의 훼손도 진단과 보존처리)

  • Kim, Sa-Dug;Lee, Myeong-Seong;Han, Byeong-Il;Lee, Jang-Jon;Song, Chi-Young
    • Journal of Conservation Science
    • /
    • v.25 no.3
    • /
    • pp.323-333
    • /
    • 2009
  • The Jincheonsagongnimaaeyeoraeipsang is a great stone relief Buddha in Goryeo Dynasty, transmitting sculptural styles of the Silla Kingdom. The Buddha was carved on the biotite granite basement, and was undergone cleaning treatment in 2007. The basement rock was opened in plenty cracks bringing out structural instability. And the top of the basement rock was colonized by trees obstructing sunshine and raising humidity. As a result of failure analysis, the basement rock of the Buddha had a major possibility of wedge failure in the parts of the face, hands and cloths. Therefore, the cracks were filled up with epoxy resin L-50, and titanium bars and wire ropes were applied to bind cracked rock blocks. The surface of the crack filler was colored by granite and talc powder with inorganic pigment and L-30. The crack meters were installed on the stone relief Buddha to monitor further behavior, lastly.

  • PDF