• Title/Summary/Keyword: Applications in Biomedicine

Search Result 38, Processing Time 0.038 seconds

Nonparametric multiple comparison method using aligned method and joint placement in randomized block design with replications (반복이 있는 랜덤화 블록 모형에서 정렬방법과 결합위치를 이용한 비모수 다중비교법)

  • Hwang, Juwon;Kim, Dongjae
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.5
    • /
    • pp.599-610
    • /
    • 2018
  • The method of Mack and Skillings (Technometrics, 23, 171-177, 1981) is a nonparametric multiple comparison method in a randomized block design with replications. This method is likely to result in loss of information because each block is ranked using the average of observations instead of repeated observations. In this paper, we proposed a new nonparametric multiple comparison method in the randomized block model with replications using an alignment method proposed by Hodges and Lehmann (The Annals of Mathematical Statistics, 33, 482-497, 1962) that extend the joint placement method proposed by Chung and Kim (Communications for Statistical Applications and Methods, 14, 551-560, 2007). In addition, Monte Carlo simulation compared the family wise error rate and power with the parametric method and the nonparametric method.

Polymer Nanofibers for Biomedical Engineering

  • Shin, Min-Kyoon;Kim, Seon-Jeong;Kim, In-Young;Kim, Sun-I.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.3
    • /
    • pp.173-178
    • /
    • 2008
  • Recent advancements in the electrospinning method enable the production of ultrafine solid and continuous fibers with diameters ranging from a few nanometers to a few hundred nanometers with controlled surface and morphological features. A wide range of biopolymers can be electrospun into mats with a specific fiber arrangement and structural integrity. These features of nanofiber mats are morphologically similar to the extracellular matrix of natural tissues, which are characterized by a wide pore diameter distribution, a high porosity, effective mechanical properties, and specific biochemical properties. This has resulted in various kinds of applications for polymer nanofibers in the field of biomedicine and biotechnology. The current emphasis of research is on exploiting these properties and focusing on determining the appropriate conditions for electrospinning various biopolymers for biomedical applications, including scaffolds used in tissue engineering, wound dressing, drug delivery, artificial organs, and vascular grafts, and for protective shields in specialty fabrics. This paper reviews the research on biomedical applications of electrospun nanofibers.

Immunosignature: Serum Antibody Profiling for Cancer Diagnostics

  • Chapoval, Andrei I;Legutki, J Bart;Stafford, Philip;Trebukhov, Andrey V;Johnston, Stephen A;Shoikhet, Yakov N;Lazarev, Alexander F
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.4833-4837
    • /
    • 2015
  • Biomarkers for preclinical diagnosis of cancer are valuable tools for detection of malignant tumors at early stages in groups at risk and screening healthy people, as well as monitoring disease recurrence after treatment of cancer. However the complexity of the body's response to the pathological processes makes it virtually impossible to evaluate this response to the development of the disease using a single biomarker that is present in the serum at low concentrations. An alternative approach to standard biomarker analysis is called immunosignature. Instead of going after biomarkers themselves this approach rely on the analysis of the humoral immune response to molecular changes associated with the development of pathological processes. It is known that antibodies are produced in response to proteins expressed during cancer development. Accordingly, the changes in antibody repertoire associated with tumor growth can serve as biomarkers of cancer. Immunosignature is a highly sensitive method for antibody repertoire analysis utilizing high density peptide microarrays. In the present review we discuss modern methods for antibody detection, as well as describe the principles and applications of immunosignature in research and clinical practice.

Super-resolution Microscopy with Adaptive Optics for Volumetric Imaging

  • Park, Sangjun;Min, Cheol Hong;Han, Seokyoung;Choi, Eunjin;Cho, Kyung-Ok;Jang, Hyun-Jong;Kim, Moonseok
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.550-564
    • /
    • 2022
  • Optical microscopy is a useful tool for study in the biological sciences. With an optical microscope, we can observe the micro world of life such as tissues, cells, and proteins. A fluorescent dye or a fluorescent protein provides an opportunity to mark a specific target in the crowd of biological samples, so that an image of a specific target can be observed by an optical microscope. The optical microscope, however, is constrained in resolution due to diffraction limit. Super-resolution microscopy made a breakthrough with this diffraction limit. Using a super-resolution microscope, many biomolecules are observed beyond the diffraction limit in cells. In the case of volumetric imaging, the super-resolution techniques are only applied to a limited area due to long imaging time, multiple scattering of photons, and sample-induced aberration in deep tissue. In this article, we review recent advances in super-resolution microscopy for volumetric imaging. The super-resolution techniques have been integrated with various modalities, such as a line-scan confocal microscope, a spinning disk confocal microscope, a light sheet microscope, and point spread function engineering. Super-resolution microscopy combined with adaptive optics by compensating for wave distortions is a promising method for deep tissue imaging and biomedical applications.

Recent Development in Biocompatible Biosensors

  • Yongju Lee;Swarup Biswas;Minsuk Koo;Hyeok Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.403-411
    • /
    • 2023
  • The shift in the medical paradigm from treatment to prevention and diagnosis has underscored the growing significance of biosensors. Notably, the recent COVID-19 pandemic has spurred the widespread adoption of biosensors for the detection of viral genes and antigens. Consequently, there has been a substantial increase in both the demand for biosensors and the industries associated with their production. Furthermore, biosensors find applications not only in healthcare but also in diverse fields such as environmental monitoring, food quality control, military defense, and industrial processes. In this brief review, we delve into the essential attributes of biosensors, namely sensitivity, selectivity, and stability. We provide an overview of the latest research trends aimed at improving these attributes. Additionally, we introduce recent research cases in which these attributes are being applied both in vivo and in vitro.

Substrate-free Biosensing using Brownian Rotation of Bio-conjugated Magnetic Nanoparticles

  • Chung Seok-Hwan;Hoffmann Axel;Chen, Liaohai;Sun, Shouheng;Guslienko Konstantin;Grimsditch Marcos;Bader Samuel D.
    • Journal of Magnetics
    • /
    • v.11 no.4
    • /
    • pp.189-194
    • /
    • 2006
  • The recent development of bio-conjugated magnetic nanoparticles offers many opportunities for applications in the field of biomedicine. In particular, the use of magnetic nanoparticles for biosensing has generated widespread research efforts following the progress of various magnetic field sensors. Here we demonstrate substrate-free biosensing approaches based on the Brownian rotation of ferromagnetic nanoparticles suspended in liquids. The signal transduction is through the measurement of the magnetic ac susceptibility as a function of frequency, whose peak position changes due to the modification of the hydrodynamic radius of bio-conjugated magnetic nanoparticles upon binding to target bio-molecules. The advantage of this approach includes its relative simplicity and integrity compared to methods that use substrate-based stray-field detectors.

Noble Metal Nanowire Based SERS Sensor

  • Gang, Tae-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.87-87
    • /
    • 2013
  • The interface between nanomaterials and biosystems is emerging as one of the broadest and most dynamic areas of science and technology, bringing together biology, chemistry, physics and many areas of engineering, biomedicine. The combination of these diverse areas of research promised to yield revolutionary advances in healthcare, medicine, and life science. For example, the creation of new and powerful nanosensors that enable direct, sensitive, and rapid analysis of biological and chemical species can advance the diagnosis and treatment of disease, discovery and screening of new drug molecules. Nanowire based sensors are emerging as a powerful and general platform for ultrasensitive and multiplex detection of biological and chemical species. Here, we present the studies about noble metal nanowire sensors that can be used for sensitive detection of a wide-range of biological and chemical species including nucleic acids, proteins, and toxic metal ions. Moreover, the optical and electrochemical applications of noble metal nanowires are introduced. Noble metal nanowires are successfully used as plasmonic antennas and nanoelectrodes, thereby provide a pathway for a single molecule sensor, in vivo neural recording, and molecular injection and detection in a single living cell.

  • PDF

Enhancement of potency and stability of human extracellular superoxide dismutase

  • Kim, Sunghwan;Kim, Hae-Young;Kim, Jung-Ho;Choi, Jung-Hye;Ham, Won-Kook;Jeon, Yoon-Jae;Kang, Hara;Kim, Tae-Yoon
    • BMB Reports
    • /
    • v.48 no.2
    • /
    • pp.91-96
    • /
    • 2015
  • Cells express several antioxidant enzymes to scavenge reactive oxygen species (ROS) responsible for oxidative damages and various human diseases. Therefore, antioxidant enzymes are considered biomedicine candidates. Among them, extracellular superoxide dismutase (SOD3) had showed prominent efficacy against asthma and inflammation. Despite its advantages as a biomedicine, the difficulty in obtaining large quantity of active recombinant human SOD3 (rhSOD3) has limited its clinical applications. We found that a significant fraction of over-expressed rhSOD3 was composed of the inactive apo-enzyme and its potency against inflammation depended on the rate of metal incorporation. Also, purified rhSOD3 was unstable and lost its activity very quickly. Here, we suggest an ideal preparative method to express, purify, and store highly active rhSOD3. The enzymatic activity of rhSOD3 was maximized by incorporating metal ions into rhSOD3 after purification. Also, albumin or polyethylene glycol prevented rapid inactivation or degradation of rhSOD3 during preparative procedures and long-term storage.

Application of Oxide Nanofibers Synthesized by Electrospinning to Chemical Sensors

  • Choi, Sun-Woo;Akash, Katoch;Jung, Sung-Hyun;Kim, Sang-Sub
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.3.2-3.2
    • /
    • 2011
  • Nanofibers, one of various one-dimensional nanomaterials such as nanorods, nanowires and nanotubes have been successfully synthesized by many groups in recent years and their applications to chemical sensors, catalytic filters and biomedicine, etc. are extensively tested. In particular, there is a possibility that chemical sensors based on oxide nanofibers can overcome the shortcomings of chemical sensors based on single nanowires. In order to prepare oxide nanofibers, the electrospinning method is most widely used. In this work, we synthesized various oxide nanofibers including ZnO, SnO2 and CuO by employing an electrospinning method and various shapes of nanofibers including core-shell nanofibers and hollow nanofibers as well. The response properties of the various nanofibers to oxidizing and reducing gaseous species have been investigated systematically. The normal oxide nanofibers showed high sensitivity and quite fast response time to many gaseous species. Furthermore, derivatives of normal nanofibers including hollow nanofibers, core-shell nanofibers and heterostructured nanofibers display much superior sensing properties. These results hold promise for the practical application of oxide nanofibers to chemical sensors. In addition, the sensing mechanisms operated in the nanofibers will be discussed in detail.

  • PDF

Effect of Nanomaterials on the Early Development of Fish Embryos: (2) Metallic Nanomaterials (어류수정란 발달에 미치는 나노독성 연구동향: (2) 금속계 나노물질)

  • Shin, Yu-Jin;An, Youn-Joo
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.943-953
    • /
    • 2012
  • Because of their unique properties, nano-sized metallic nanomaterials (NMs) have been used in extensive applications of biomedicine, electronics, optics, engineering, and personal care products. Accordingly, with the increasing release of NMs into the environment, numerous studies of nanoecotoxicity have been conducted. Fish embryo toxicity test (FET) has many benefits in evaluating toxicity of NMs as an alternative to a whole-body test in fish. In this study, we collected and analyzed the toxicity studies of metallic NMs on freshwater fish embryos. Most studies have demonstrated that metallic NMs are highly toxic during the early development of fish embryos. However, it should be noted that the results for the same NMs on the same test species show variation due to differences in the size or surface properties of the test NMs and exposure conditions. For the safe use of metallic NMs, we need to analyze their effects based on their properties, test species, environmental media, and diverse conditions.