• Title/Summary/Keyword: Apparent quantum yield

Search Result 36, Processing Time 0.031 seconds

Photosynthetic Characteristics of Korean Endemic Plant, Aster koraiensis Nakai According to Growth and Development Conditions (생육환경에 따른 한국특산식물 벌개미취의 광합성 특성)

  • Nam, Hyo-Hoon;Son, Chang-Ki;Lee, Joong-Hwan;Kwon, Jung-Bae
    • Korean Journal of Plant Resources
    • /
    • v.29 no.4
    • /
    • pp.393-399
    • /
    • 2016
  • This study was conducted to elucidate the photosynthetic response to the environment and establish optimum cultivation conditions for the Korean endemic plant, Aster koraiensis. Photosynthetic characteristics according to growth stage, light, CO2, and soil water potential were investigated. During the first year of transplanting, photosynthetic rates were drastically increased until June, after which they slowly declined, During the second year, photosynthetic rates declined throughout the entire growth period. The highest level of light compensation point was shown the early growth stage. Photosynthetic rates affected by intercellular CO2 concentration were maintained or decreased over the CO2 saturation point. The lowest CO2 compensation point was 16.1 μmol·mol−1 during March. The morphological changes of leaves were observed due to shading with chlorophyll contents increasing. Photosynthetic rates were higher at 0% and 50% shading treatments than at 75%. There were rarely any morphological changes of leaves due to soil moisture, however, changes to leaf compactness were observed. Photosynthetic rate, apparent quantum yield, and respiration rate increased, whereas water use efficiency decreased over −25 kPa of soil moisture.

Interactive Effects of Ozone and Light Intensity on Platanus occidentalis L. Seedlings

  • Kim, Du-Hyun;Han, Sim-Hee;Lee, Kab-Yeon;Kim, Pan-Gi
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.5
    • /
    • pp.508-515
    • /
    • 2008
  • Sycamore (Platanus occidentalis L.) seedlings were grown under low light intensity and ozone treatments to investigate the role of the light environment in their response to chronic ozone stress. One-year-old seedlings of Platanus occidentalis L. were grown in pots for 3 weeks under low light (OL, $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and high light (OH, $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) irradiance in combination with 150 ppb of ozone fumigation. After three weeks of ozone and light treatment, seedlings were placed in ozone free clean chamber for 3 weeks for recovery from ozone stress with same light conditions to compare recovery capacity. Ozone fumigation determined an impairment of the photosynthetic process. Reduction of leaf dry weight (14%) and shoo/root ratio (17%) were observed in OH treatment. OL treatment also showed severe reductions in leaf dry weight and shoot/root ratio by 48% and 36% comparing to control, respectively. At the recovery phase, OH-treated plants recovered their biomass, whereas OL-treated plant showed reduction in leaf dry weight (52%) and shoot/root ratio (49%). OH-treated plants reached similar relative growth rate (RGR) comparing to control, whereas OL-treated plants showed lower RGR in stem height. However, there were no significant differences in response to those treatments in stem diameter RGR at the recovery phase. Ozone treatment produced significant reduction of net photosynthesis in both high and low light treatments. Carboxylation efficiency and apparent quantum yield in OL-treated plants showed significant reductions rate to 10% and 45%, respectively. At the recovery stage, ozone exposed seedlings under high light had similar photosynthetic capacity comparing to control plants. Antioxidant enzymes activities such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR) were increased in ozone fumigated plants only under low light. The present work shows that the physiological changes occur in photosynthesis-related parameters and growth due to ozone and low light stress. Thus, low light seems to enhance the detrimental effects of ozone on growth, photosynthesis, and antioxidant enzyme responses.

Determination of Ozone Tolerance on Environmental Tree Species Using Standard Index (표준화 지수를 이용한 환경수목의 오존 내성 결정)

  • Han, Sim-Hee;Kim, Du-Hyun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.1
    • /
    • pp.3-12
    • /
    • 2009
  • Ozone tolerance of tree species was determined by standard index of physiological damages and biochemical defense responses under short-term ozone exposure. At the end of 150ppb $O_3$ fumigation, photosynthetic characteristics and antioxidative enzyme activities were analyzed in the leaves of five species(Koelreuteria paniculata, Firmiana simplex, Styrax japonica, Fraxinus rhynchophylla, Viburnum sargentii). Injury index was determined by the effect of ozone on photosynthetic parameters and malondialdehyde(MDA) content, and tolerance index was calculated using the rate of increase in superoxide dismutase(SOD), ascorbate-peroxidase(APX), glutathione reductase(GR) and catalase(CAT) activities. Apparent quantum yield(AQY), carboxylation efficiency(Ce) and photo-respiration rate(PR) decreased in the leaves of five species with increasing ozone exposure time. These parameters were considered as an appropriate indicator for stress evaluation. Antioxidative enzyme activities showed various results depending on the tree species, exposure time, and enzyme types. SOD activity of K. paniculata increased with ozone exposure time, and that of F. rhynchophylla increased only after 6 hours of ozone exposure. CAT activity of $O_3$-exposed F. simplex was lower than the control. Based on standard index, ozone tolerance ability of five species was determined as two tolerant species(F. rhynchophylla > K. paniculata) and three sensitive species(S. japonica > F. simplex > V. sargentii).

Effects of NaCl on the Growth and Physiological Characteristics of Crepidiastrum sonchifolium (Maxim.) Pak & Kawano (NaCl 처리가 고들빼기의 생장과 생리적 특성에 미치는 영향)

  • Lee, Kyeong Cheol;Han, Sang Kyun;Yoon, Kyeong Kyu;Lee, Hak bong;Song, Jae Mo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • Background: This study was conducted to investigate the effects of NaCl concentration on the photosynthetic parameters, chlorophyll fluorescence and growth characteristics of Crepidiastrum sonchifolium. Methods and Results: As treatments, we subjected C. sonchifolium plants to four different concentrations of NaCl (0, 50, 100 and 200 mM). We found that the photosynthetic parameters maximum photosynthesis rate (PN max), net apparent quantum yield (Φ), maximum carboxylation rate (Vcmax), and maximum electron transport rate (Jmax) were significantly reduced at an NaCl concentration greater than 100 mM. In contrast, there was an increase in water-use efficiency with increasing NaCl concentration, although in terms of growth performances, leaf dry weight, root dry weight, stem length, and total dry weight all decreased with increasing NaCl concentration. Furthermore, leakage of electrolytes, as a consequence of cell membrane damage, clearly increased in response to an increase in NaCl concentration. Analysis of the polyphasic elevation of chlorophyll a fluorescence transients (OKJIP) revealed marked decrease in flux ratios (ΦPO, ΨO and ΦEO) and the PIabs, performance index in response to treatment with 200 mM NaCl, thereby reflectings the relatively reduced state of photosystem II. This increase in fluorescence could be due to a reduction in electron transport beyond Q-A. We thus found that the photosynthetic parameters, chlorophyll fluorescence and growth characteristics of C. sonchifolium significantly increased in response to treatment with 200 mM NaCl. Conclusions: Collectively, the findings of this study indicate that C. sonchifolium shows relatively low sensitivity to NaCl stress, although photosynthetic activity was markedly reduced in plants exposed to 200 mM NaCl.

Optimum Light Intensity and Fertilization Effects on Physiological Activities of Forsythia saxatil (산개나리의 생리적 활성에 대한 최적 광도 조건과 시비 효과)

  • Kim, Gil Nam;Han, Sim-Hee;Kim, Du Hyun;Yun, Chung-Weon;Shin, Soo Jeong
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.3
    • /
    • pp.372-381
    • /
    • 2013
  • The leaf growth and physiological characteristics of Forsythia saxatilis were investigated under different relative light intensities (RLI) and fertilization levels in order to find out the optimum environmental conditions for in-situ restoration. RLI and fertilization were four levels (30%, 43%, 63% of full sun and full sun) and three levels (non-fertilization, 2 times and 3 times of average forest soil in Korea), respectively. According to the increase of fertilization level under all RLI, leaf area increased and leaf dry weight and the ratio of leaf dry weight to leaf area decreased. As the fertilization level increased, photosynthetic pigment contents such as chlorophyll a, b and carotenoid under all RLI decreased. And pigment contents were the highest under full sun in the same fertilization level. Foliar nitrogen content under fertilization was higher than that under non-fertilization, and chlorophyll/nitrogen ratio decreased with the increase of fertilization level under all RLI. The increase of photosynthetic rate was observed with the increase of fertilization level at 63% of RLI and full sun, and dark respiration rate under fertilization was lower than under non-fertilization. Apparent quantum yield was lower at non-fertilization than that of fertilization, and it was highest at 63% of RLI under the same fertilization level. In conclusion, leaf growth and physiological characteristics of F. saxatilis could be improved under higher light conditions and fertilization.

Physiological Responses of Bupleurum latissimum Nakai, Endangered Plants to Changes in Light Environment (광환경조절에 따른 멸종위기식물 섬시호의 생리적 반응)

  • Lee, Kyeong-Cheol;Wang, Myeong-Hyeon;Song, Jae Mo
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.154-161
    • /
    • 2013
  • This study was conducted to investigate the physiological responses of Bupleurum latissimum, endangered plants by light condition. We investigated photosynthetic parameters, chlorophyll contents and chlorophyll fluorescence under different shading treatments (Shaded 50%, 70%, 90% and non-treated). Results showed that net apparent quantum yield (AQY) and chlorophyll contents were significantly increased with elevating shading level. However, light compensation point (LCP) and dark respiration ($R_d$) were shown the opposite trend. Especially, non-treated exhibited photoinhibition such as reduction of chlorophyll contents and maximum photosynthesis rate ($Pn_{max}$) also variation trend of stomatal conductance ($g_s$), and transpiration rate (E) were decreased to prevent water loss. Photosynthetic rate ($P_{Nmax}$) and photochemical efficiency (Fv/Fm) of 90% treatment showed a drastic reduction in July. This implies that photosynthetic activity will be sharply decreased with a long period of low light intensity. The 50% treatment showed relatively higher photosynthetic activity than other treated. This result suggested that growth and physiology of B. latissimum adapted to 50% of full sunlight.

Characteristics of Photosynthesis of Dwarf and Street Tree Cultivars of Hibiscus syriacus L. (분화용 및 가로수형 무궁화 품종의 광합성 특성)

  • Cho, Yoon-Jin;Park, Hyung-Soon;Chang, Yong-Seock;Shin, Man-Yong;Chung, Dong-Jun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.1
    • /
    • pp.55-60
    • /
    • 2007
  • This study was conducted to find characteristics of photosynthesis for dwarf and street tree cultivars of Hibiscus syriacus L. Characteristics of growth and flowering on some cultivars were investigated. The photosynthetic capacity for the cultivars was also measured. Bulsae showed the best height increase; Soyang represented the lowest growth. Baektanshim ${\times}$ Kyungbuk1 had the largest number of branches and leaves. Sundeok and Bulsae were the best in terms of height and width of flower, Soyang showed the smallest flowers. According to the analysis of chlorophyll content (chlorophyll a, b, total) for the cultivars, there was little difference between Sundeok and Bulsae. Based on light response curves for cultivars, it was found that Baektanshim ${\times}$ Kyungbuk1 and Soyang had lower light compensation and light saturation points than Bulsae and Sundeok. Cultivars Baektanshim ${\times}$ Kyungbuk1 and Soyang were also low in dark respiration, photosynthetic capacity, and net apparent quantum yield. In conclusion, it is recommended that cultivars Baektanshim ${\times}$ Kyungbuk1 and Soyang might be used as a dwarf type due to photosynthetic capacity.

Photosynthetic Responses of Populus alba×glandulosa to Elevated CO2 Concentration and Air Temperature (CO2 농도 및 기온 상승에 대한 현사시나무의 광합성 반응)

  • Lee, Solji;Oh, Chang-Young;Han, Sim-Hee;Kim, Ki Woo;Kim, Pan-Gi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.1
    • /
    • pp.22-28
    • /
    • 2014
  • This study was conducted to investigate the photosynthetic characters of Populus alba${\times}$glandulosa cuttings in response to elevated $CO_2$ concentration and air temperature for selecting tree species adaptive to climate change. The cuttings were grown in environment controlled growth chambers with two combinations of $CO_2$ concentration and air temperature conditions: (i) $22^{\circ}C$ + $CO_2$ 380 ${\mu}mol$ $mol^{-1}$ (control) and (ii) $27^{\circ}C$ + $CO_2$ 770 ${\mu}mol$ $mol^{-1}$ (elevated) for almost three months. The cuttings under the elevated treatment showed reduced tree height and photosynthetic pigment contents such as chlorophyll and carotenoid. In particular, the elevated treatment resulted in a marked reduction in the chlorophyll a closely associated with $CO_2$ fixative reaction system. Different levels of reduction in photosynthetic characters were found under the elevated treatment. A decrease was noted in photochemical reaction system parameters: net apparent quantum yield (7%) and photosynthetic electron transport rate (14%). Moreover, a significant reduction was obvious in $CO_2$ fixative reaction system parameters: carboxylation efficiency (52%) and ribulose-1,5-bisphosphate(RuBP) regeneration rate (24%). These results suggest that the low level of photosynthetic capacity may be attributed to the decreased $CO_2$ fixative reaction system rather than photochemical reaction system.

Physiological Response and Growth Performance of Parasenecio firmus under Different Shading Treatments (차광처리에 따른 병풍쌈의 생리반응 및 생장특성)

  • Lee, Kyeong-Cheol;Lee, Hak-Bong;Park, Wan-Geun;Han, Sang-Sup
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.2
    • /
    • pp.79-89
    • /
    • 2012
  • This study was conducted to investigate the chlorophyll contents, photosynthetic characteristics, chlorophyll fluorescence, and growth performance of Parasenecio firmus under changing light environment. Parasenecio firmus was grown under non-treated (full sunlight) and three different shading conditions (88~93%, 65~75% and 45%~55% of full sunlight) for the experiment. Total chlorophyll content, photochemical efficiency (Fv/Fm), T/R ratio, specific leaf area (SLA), leaf area ratio (LAR), and leaf weight ratio (LWR) were increased with increasing shading level, but decreased dark respiration. Therefore, light absorption and light utilization efficiency were improved under the low intensity light. Plants under 65~75% of full sunlight had best maximum photosynthetic rate and net apparent quantum yield in May. On the other hand, the non-treated plants had lower maximum photosynthetic rate, photochemical efficiency, and chlorophyll content than the treated ones. Parasenecio firmus considered to be a sciophyte, is fairly sensitive to high intensity light. If 88-93% of full sunlight lasts for a long period, photosynthetic capacity will be sharply decreased, though limiting light. These results suggest that growth of Parasenecio firmus adapted to 65~75% of full sunlight.

Changes in Growth and Physiological Characteristics of Dendranthema zawadskii var. latiloba (Maxim.) Kitam. and Aster koraiensis Nakai by Shading Treatment (차광처리가 벌개미취와 구절초의 생장 및 생리적 특성에 미치는 영향)

  • Kim, Dong-Hak;Kim, Young-Eun;Kim, Sang-Jun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.4
    • /
    • pp.1-13
    • /
    • 2022
  • This study was conducted to investigate the chlorophyll content, photosynthetic characteristics, and growth characteristics of Aster koraiensis and Dendranthema zawadskii var. latiloba according to shading treatment. A. koraiensis and D. zawadskii grew in four different shading treatment plots (0%, 50%, 75% and 95% of full sunlight) for experiments. It was found that as the shading level increased, the total chlorophyll content increased and dark respiration decreased in both A. koraiensis and D. zawadskii, indicating that A. koraiensis and D. zawadskii increase the utilization efficiency for photosynthesis under low light conditions. In addition, as the shading level increased, the net apparent quantum yield increased, resulting in the highest in the 95% shading plot, but the highest photosynthetic rate, water use efficiency, and leaf mass per area (LMA) were shown in the control group than in the shading treatments. The results showed that A. koraiensis and D. zawadskii are heliophytes showing plasticity to light, and if the light is restricted to continue to shade, it may be detrimental to growth. For healthy growth, it is considered suitable to grow A. koraiensis under full light conditions, and D. zawadskii under the light condition that blocks 0-50% of full sunlight.