• Title/Summary/Keyword: Apparent earth pressure

Search Result 13, Processing Time 0.018 seconds

The Calculation Method of Apparent Earth Pressure in Multi-Layered Ground with Clay and Sand (점토와 모래가 포함된 다층지반의 경험토압 산정방법에 관한 연구)

  • Kim, Byung-Il;Hong, Kang-Han;Kim, Jin-Hae;Han, Sang-Jae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.1
    • /
    • pp.21-34
    • /
    • 2021
  • In this study, to solve a problem that cannot consider the contribution effect of each layers when the apparent earth pressure in homogeneous ground is applied to multi-layered ground, the measured earth pressures at World were investigated and analyzed. It has been confirmed that the apparent earth pressure in mulit-layered ground is different from single ground and that the extra layer's contribution to the earth pressure cannot be considered. The conventional method of calculating the apparent earth pressure for single ground was extended to mulit-layered ground, and proposed and verified the applicable method for both single and mulit-layered ground. The proposed methods predicted the earth pressure closer to the measurements at the excavation depth of 0.1Z/H or below, and the prediction reliability was evaluated to be better than the conventional method. Among the proposed methods, the method of considering the area ratio of the active failure has a geotechnical validity and predicts the most similar results to the actual earth pressure. To confirm the applicability of the proposed methods, it was presented by comparing and analyzing the results of the proposed methods with the conventional method for the actual case.

Earth Pressuroes of Tieback Walls in Sand (사질토에 시공된 앵커토류벽의 토압분포에 관한 연구)

  • 김낙경
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.17-28
    • /
    • 1998
  • The design of a ground anchor wall calculating the design anchor force and anchored walls depends primarily on the earth pressure acting on anchored w deflection of the wall, the wall stiffness, distribution exists for anchored walls. In the apparent earth pressure envelope design of anchored walls. In this study, full scale anchored w pressure distribution was obtained from function. Earth pressures obtained from pressure and with the apparent earth pre the anchored wall in sand. It is conclude is appropriate for the anchored wall design.

  • PDF

Analysis of Monitoring Results and Back Analysis for Rigid Diaphragm Wall Supported by Ground Anchor (지반앵커로 지지된 강성 지하연속벽체의 상세계측 결과분석 및 역해석 평가)

  • Lee, Jong-Sung;Hwang, Eui-Suk;Cho, Sung-Hwan;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.39-46
    • /
    • 2009
  • In this study, behavior of a rigid continuous wall, earth pressure distribution with construction stage, and axial force of earth anchors were evaluated based on field monitoring data and numerical analysis results. For this purpose, a construction site excavated using the diaphragm wall was selected and full instrumentation system was introduced. From monitoring results, it was found that the values of horizontal displacement of the wall measured from the inclinometers, which were installed within the diaphragm wall were similar to analytical value. The earth pressure increased with excavation progress due to jacking force of the ground anchors installed in previous excavation stages. When the excavation depth reached 60% of the final depth, observed earth pressure distribution was similar to that estimated from Peck's apparent earth pressure distribution. When the excavation depth was around 90% of the final depth, values of observed earth pressure showed middle values between those of Peck's and Tschebotarioffs apparent earth pressures. It was also observed that, when excavation depth is deep, values of the earth pressures from the rigid wall were similar to those estimated from conventional earth pressure distribution shape proposed for flexible walls.

Lateral Wall Movements and Apparent Earth Pressures for In-situ Walls during Deep Excavations in Multi-Layered Grounds with Rocks (암반을 포함한 다층토 지반에서의 깊은 굴착시 흙막이벽체의 수평변위 및 겉보기토압)

  • 유충식;김연정
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.43-50
    • /
    • 2000
  • This paper presents the measured performance of in-situ walls using the measured data collected from various deep excavation sites in urban area. A variety of in-situ wall systems from 57 sites were considered, including H-pile walls, soil cement walls, cast-in-place pile walls, and diaphram walls. The examination included lateral wall movements as well as apparent earth pressure distributions. The measured data were thoroughly analyzed to investigate the effects of various components of in-situ wall system, such as types of wall and supporting system, on the lateral wall movement as well as on the apparent earth pressure distribution. The results wee then compared with the current design/analysis methods, and information is presented in chart formes to provide tools that can be used for design and analysis. Using the measured data, a semi-empirical equation for predicting deep excavation induced maximum lateral wall movement is suggested.

  • PDF

Earth pressures acting on vertical circular shafts considering arching effects in c-$\phi$ soils : II. Lab. Model Tests (c-$\phi$ 지반에서의 아칭현상을 고려한 원형수직터널 토압 : II. 실내 모형실험)

  • Kim, Do-Hoon;Cha, Min-Hyuck;Lee, Dea-Su;Kim, Kyung-Ryeol;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.2
    • /
    • pp.129-144
    • /
    • 2010
  • The earth pressure acting on the vertical shaft is less than that acting on the retaining wall due to three dimensional arching effect. Thus, it might be essential to estimate the earth pressure actually acting on the shaft when designing the vertical shaft. In this paper, large-sized model tests were conducted as Part II of companion papers to verify the newly suggested earth pressure equation proposed by Kim et al. (2009: Part I of companion papers) that can be used when designing the vertical shaft in cohesionless soils as well as in c-$\phi$ soils and multi-layered soils. The newly developed model test apparatus was designed to be able to simulate staged shaft excavation. Model tests were performed by varying the radius of vertical shaft in dry soil. Moreover, tests on c-$\phi$ soils and on multi-layered soils were also performed; in order to induce apparent cohesion to the cohesionless soil, we add some water to the dry soil to make the soil partially-saturated before depositing by raining method. Experimental results showed a load transfer from excavated ground to non-excavated zone below dredging level due to arching effect when simulating staged excavation. It was also found that measured earth pressure was far smaller than estimated if excavation is done at once; the final earth pressure measured after performing staged excavation was larger and matched with that estimated from the newly proposed equation. Measured results in c-$\phi$ soils and in multi-layered soils showed reduction in earth pressures due to apparent cohesion effect and showed good matches with analytical results.

EFFECT OF DISPLACEMENT METHOD ON SAND BED LIQUEFACTION UNDER OSCILLATING WATER PRESSURE

  • HoWoongShon
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.3
    • /
    • pp.131-137
    • /
    • 2003
  • In this paper the liquefaction of sand bed under oscillating water pressure are treated as a basic study of the prevention works against the scouring around the hydraulic structures. The results of the former resurch show that the occurrence of the liquefaction depends on both properties of the oscillating water pressure and of the sand layer. Considering the latter properties, that is , the resistivity against the liquefaction increases with the increase of the permeability of the sand bed, we propose the displcement method as one of the prevention works, which is a method to displace the upper layer of the sand bed by the sand with large permeability. The effects of this method are investigated theoretically and experimentally. By the experimental study, it is shown that the proposed displacement method has the apparent effect to prevent the liquefaction. The experimental results are explained fairly well by the theoretical analysis based on the theory of the flow through the elastic porous media.

  • PDF

Isotropic Compression Behavior of Lawsonite Under High-pressure Conditions (로소나이트(Lawsonite)의 압력에 따른 등방성 압축거동 연구)

  • Im, Junhyuck;Lee, Yongjae
    • Economic and Environmental Geology
    • /
    • v.49 no.1
    • /
    • pp.23-30
    • /
    • 2016
  • Powder samples of natural lawsonite (Ca-lawsonite, $CaAl_2Si_2O_7(OH)_2{\cdot}H_2O$) was studied structurally up to 8 GPa at room temperature using monochromatic synchrotron X-ray powder diffraction and a diamond anvil cell (DAC) with a methanol : ethanol : water (16 : 3 : 1 by volume) mixture solution as a penetrating pressure transmitting medium (PTM). Upon pressure increase, lawsonite does not show any apparent pressure induced expansion (PIE) or phase transition. Pressure-volume data were fitted to a second-order Birch-Murnaghan equation of state using a fixed pressure derivative of 4 leading to a bulk modulus ($B_0$) of 146(6) GPa. This compression is further characterized to be isotropic with calculated linear compressibilities of ${\beta}^a=0.0022GPa^{-1}$, ${\beta}^b=0.0024GPa^{-1}$, and ${\beta}^c=0.0020GPa^{-1}$.

Overtopping Model Experiments and 3-D Seepage Characteristics of the Embankment of Deteriorated Homogeneous Reservoirs (노후화된 균일형 저수지 제체의 월류모형실험과 3차원 침투특성)

  • Lee, Young Hak;Lee, Tae Ho;Lee, Dal Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.2
    • /
    • pp.13-23
    • /
    • 2019
  • In this study, an overtopping model experiments and three dimensional seepage characteristics at the deteriorated homogeneous reservoirs were performed to investigate the behavior of failure for embankment and spillway transitional zone due to overtopping. The failure pattern, pore water pressure, earth pressure and settlement by overtopping were compared and analyzed. The pattern of the failure by overtopping was gradually enlarged towards reservoirs crest from the spillway transition zone at initial stage. In the rapid stage and peak stage, the width and depth of failure gradually increased, and the pattern of the failure appeared irregular and several direction of the erosion. In the early stage, the pore water pressure at spillway transitional zone was more affected as its variation and failure width increased. In the peak stage, the pore water pressure was significantly increased in all locations due to the influence of seepage. The earth pressure increased gradually according to overtopping stage. The pore pressure by the numerical analysis was larger than the experimental value, and the analysis was more likely to increase steadily without any apparent variation. The horizontal and vertical displacements were the largest at the toe of slope and at the top of the dam crest, respectively. The results of this displacement distribution can be applied as a basis for determining the position of reinforcement at the downstream slope and the crest. The collapse in the overtopping stage began with erosion of the most vulnerable parts of the dam crest, and the embankment was completely collapsed as the overtopping stage increased.

Analysis of Plugging Effect for Large Diameter Steel Pipe Piles Considering Driveability (CEL Method) (항타시공성을 고려한 대구경 항타강관말뚝의 폐색효과 분석(CEL해석))

  • Jeong, Sang-Seom;Song, Su-Min;Ko, Jun-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.21-33
    • /
    • 2017
  • This paper presents the analysis of plugging effect especially when the large diameter steel pipe pile was installed by considering driveability (BPM, blow per meter). The Coupled Eulerian-Lagrangian (CEL) technique was used to simulate the driving of open-ended piles into soil. To consider the driveability, the applied driving energy for each pile was obtained from the analysis results by using the wave equation. The parametric studies were performed for different pile diameters, penetration depths of pile, soil elastic modulus and BPM. It was found that the SPI is almost constant with increasing both the pile diameter and the required driving energy. It is also found that the plugging effect increases with increasing the pile length, resulting in the increase of lateral earth pressure. Based on this study the apparent magnitude and distribution of the lateral earth pressure is proposed for inside portion mobilizing soil plug.