• Title/Summary/Keyword: Apparent Viscosity

Search Result 338, Processing Time 0.023 seconds

Physico-Chemical and Rheological Properties of a Bioflocculant BF-56 from Bacillus sp. A56

  • Suh, Hyun-Hyo;Moon, Seong-Hoon;Seo, Weon-Taek;Kim, Kyung-Kab;Jeon, Gee-Ill;Park, Hyun-Geoun;Park, Yong-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.209-216
    • /
    • 2002
  • Bacillus sp. A56 was studied, because of its high flocculating activity. The flocculating substance produced by this strain was purified by ethanol precipitation, cetylpyridinium chloride (CPC) precipitation, and gel permeation chromatography (GPC). The FT-IR spectrum of the purified bioflocculant, designated as BF-56, showed typical characteristics of polysaccharides. The non-sugar substituents, and sugar components of BF-56 containing glucose, fucose, glucuronic acid, and galactose in an approximate molar ratio of 2.76:1.10:1:0.12, suggested that it was a novel bioflocculant with an estimated molecular mass of over $7{\times}10^3$ kDa. Rheological analysis of BF-56 revealed that it was a pseudoplastic that had higher apparent viscosity rate at dilute concentrations than those of zooglan. The solution of bioflocculant BF-56 exhibited non-Newtonian characteristics and it was compatible to high concentrations of salts such as KCl, NaCl, $CaCl_2,\;or\;FeCl_3.$ The present results suggested strong possibility of bioflocculant BF-56 to be fully applicable to industries such as wastewater treatment.

Comparison of Steady and Physiological Blood Flow Characteristics in the Left Coronary Artery Bifurcation (좌관상동맥 분지부내의 정상혈류와 박동성혈류의 유동특성비교)

  • Suh, S.;Yoo, S.S.;Kwon, H.M.;Roh, H.W.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.57-60
    • /
    • 1995
  • The objective of this investigation is to understand the role of hemodynamics in the formation and development of atherosclerosis lesions in the human left coronary artery This study also aims to compare the blood flow characteristics of steady and physiological flows. Three dimensional, steady and physiological flows of blood in the left coronary artery are simulated using the Finite Volume Method. Apparent viscosity of blood is represented as a function of shear rate by the Carreau model. Distributions of velocity, pressure and shear stress in tile left coronary artery bifurcation are presented to compare tile steady and physiological flow characteristics.

  • PDF

Study on the Blood Flow Characteristics in the Stenosed Coronary Artery (협착이 발생된 관상동맥내 혈류특성에 관한 연구)

  • Roh, H.W.;Suh, S.H.;Yoo, S.S.;Kwon, H.M.;Kim, D.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.111-115
    • /
    • 1997
  • The objective of present study is to obtain information about stenosis effects on the blood flow in the coronary artery bifurcation. The three dimensional steady of blood in the coronary artery bifurcation with stenosis and without stenosis are simulated using the finite volume method. Apparent viscosity of blood is represented as a function of shear rate by the Carreau models. Velocities vectors and wall shear stresses along the branch tubes with stenosis are compared with those of without stenosis for steady flows. Flow phenomena in the stenosed branch tubes are discussed extensively.

  • PDF

Development of Flow Control Valve Using MR Fluid (MR유체를 이용한 유량제어 밸브)

  • Lee, Hyung-Don;Bae, Hyung-Sub;Lee, Yuk-Hyung;Park, Myeong-Kwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.888-891
    • /
    • 2011
  • This paper presents development of flow control valve using MR fluid. Generally, since the apparent viscosity of MR fluids is adjusted by applying magnetic fields, the MR valves can control high level fluid power without any mechanical moving parts. In this paper, flow control valve using MR fluid on the behavior of the magnetic field influence on the numerical analysis of more accurate electromagnetic parameters were obtained, even if when magnetic field apply inside of surrounding MR fluid from electromagnet, more realistic designing way analysis of characteristic of whole magnetic field distribution is suggested by surrounding magnetic material. Also, comparison of flow rate inlet and outlet, behavior of MR fluid in experiments proposed. A new type of flow control valve using MR fluid is proposed by analysis of behavior of MR fluid in experiments.

Rheological Differences of Waxy Barley Flour Dispersions Mixed with Various Gums

  • Kim, Chong-Yeon;Yoo, Byoungseung
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.1
    • /
    • pp.56-61
    • /
    • 2017
  • Rheological properties of waxy barley flour (WBF) dispersions mixed with various gums (carboxyl methyl celluleose, guar gum, gum arabic, konjac gum, locust bean gum, tara gum, and xanthan gum) at different gum concentrations were examined in steady and dynamic shear. WBF-gum mixture samples showed a clear trend of shear-thinning behavior and had a non-Newtonian nature with yield stress. Rheological tests indicated that the flow and dynamic rheological parameter (apparent viscosity, consistency index, yield stress, storage modulus, and loss modulus) values of WBF dispersions mixed with gums, except for gum arabic, were significantly higher than those of WBF with no gum, and also increased with an increase in gum concentration. In particular, konjac gum at 0.6% among other gums showed the highest rheological parameter values. Tan ${\delta}$ values of WBF-xanthan gum mixtures were lower than those of other gums, showing that there is a more pronounced synergistic effect on the elastic properties of WBF in the presence of xanthan gum. Such synergistic effect was hypothesized by considering thermodynamic compatibility between xanthan gum and WBF. These rheological results suggest that in the WBF-gum mixture systems, the addition of gums modified the flow and viscoelastic properties of WBF, and that these modifications were dependent on the type of gum and gum concentration.

The Effect of Molecular Weight and the Linear Velocity of Drum Surface on the Properties of Electrospun Poly(ethylene terephthalate) Nonwovens

  • Kim, Kwan-Woo;Lee, Keun-Hyung;Khil, Myung-Seob;Ho, Yo-Seung;Kim, Hak-Yong
    • Fibers and Polymers
    • /
    • v.5 no.2
    • /
    • pp.122-127
    • /
    • 2004
  • In this study, we evaluated the effect of the molecular weight of the polymer on electrospun poly(ethylene terephthalate) (PET) nonwovens, and their mechanical properties as a function of the linear velocity of drum surface. Polymer solutions and electrospun PET nonwovens were characterized by means of viscometer, tensiometer, scanning electron microscope(SEM), wide angle X-ray diffraction measurement (WAXD) and universal testing machine (UTM). By keeping the uniform solution viscosity, regardless of molecular weight differences, electrospun PET nonwovens with similar average diameter could be obtained. In addition, the mechanical properties of the electrospun PET nonwovens were strongly dependent on the linear velocity of drum surface. From the results of the WAXD scan, it was found that the polymer took on a particular molecular orientation when the linear velocity of drum surface was increased. The peaks became more definite and apparent, evolving from an amorphous pattern at 0 m/min to peaks and signifying the presence of crystallinity at 45 m/min.

Gellan-type Microbial Polysaccharide Production in Continuous Fermentation (Gellan형 미생물 다당류의 연속생산)

  • 정봉우;이은미장광엽김춘영
    • KSBB Journal
    • /
    • v.9 no.1
    • /
    • pp.85-90
    • /
    • 1994
  • The Gellan-type polysaccharide produced by Pseudomonas elodea(ATCC 31461) is one of the new heteropolysaccharides, having useful properties as gelling, suspending, stabilizing, emulsifying and binding agents in aqueous systems. Medium compositions for growth stage and production stage are improved. The problems of low cell concentration and poor productivity in highly viscous fermentation were attributed to inadequate mixing accompanied by insufficient oxygen transfer. During continuous culture, cell growth and polysaccharide production were greatly affected by the apparent viscosity, and they showed oscillation behavior, i.e. as the product concentration increases, cell concentration decreases. With improved culture conditions, the productivity of continuous culture increased up to 0.6g/$\ell$/hr(6-fold that of batch culture ) at dilution rate, D=$0.14hr^{-1}$.

  • PDF

Studies for Physicochemical and In Vitro Digestibility Characteristics of Flour and Starch from Chickpea (Cicer arietinum L.)

  • Chung, Hyun-Jung
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.4
    • /
    • pp.339-347
    • /
    • 2011
  • Flour and isolated starch from chickpea (desi type, 328S-8) were evaluated for their in vitro digestibility and physicochemical properties. The protein content, total starch content and apparent amylose content of chickpea flour and isolated starch were 22.2% and 0.6%, 45.8% and 91.5%, and 11.7% and 35.4%, respectively. Chickpea starch granules had an oval to round shape with a smooth surface. The X-ray diffraction pattern of chickpea starch was of the C-type and relative crystallinity was 24.6%. Chickpea starch had only a single endothermic transition (13.3 J/g) in the DSC thermogram, whereas chickpea flour showed two separate endothermic transitions corresponding to starch gelatinization (5.1 J/g) and disruption of the amylose-lipid complex (0.7 J/g). The chickpea flour had a significantly lower pasting viscosity without breakdown due to low starch content and interference of other components. The chickpea starch exhibited significant high setback in the viscogram. The average branch chain length, proportion of short branch chain (DP 6~12), and long branch chains (DP${\geq}$37) of isolated chickpea starch were 20.1, 20.9% and 9.2%, respectively. The rapidly digestible starch (RDS), slowly digestible starch (SDS) and resistant starch (RS) contents of chickpea flour and starch were 9.9% and 21.5%, 28.7% and 57.7%, and 7.1% and 9.3%, respectively. The expected glycemic index (eGI) of chickpea flour (39.5), based on the hydrolysis index, was substantially lower than that of isolated chickpea starch (69.2).

Analysis of Filling in Injection Molding with Compressibility (압축성을 고려한 사출성형 충전과정에 관한 연구)

  • Han, Kyeong-Hee;Im, Yong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.735-745
    • /
    • 1997
  • In this study, the compressibility of resin was considered in filling analysis to account for the possible packing type flow. A numerical simulation program employing a hybrid finite element/finite difference scheme was developed to solve Hele-Shaw flow of the compressible viscous fluid at non-isothermal conditions. To advance the melt front, a control volume approach was adopted. Thin complex 3-D shapes of cavities, runners, and sprues were discretized by employing triangular, cylindrical and/or rectangular strip elements. Mass conservation was applied to each control volume to solve for the pressure distribution. Directly applying a constant mass flow rate at the inlet removes calculation of the apparent pressure boundary conditions, resulting in better simulation condition. The Cross model was used to model viscosity and the Tait equation was employed to represent density as a function of temperature and pressure. The validity of the developed program was verified through comparisons with available data in the literature and the effect of compressibility on the pressure distribution was discussed. To reduce computation time, 1-D and 2-D elements were used instead of applying triangular elements and the numerical results were compared to each other.

Rheological Characteristics of Thermal Gelatinized Corn Starch Solution (옥수수 전분 호화액의 리올로지 특성)

  • Kim, Ju-Bong;Lee, Shin-Young;Kim, Sung-Kon
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.54-58
    • /
    • 1992
  • The reological properties of commercial corn starch solutions at various concentrations($4{\sim}9%$) and temperatures($30{\sim}60^{\circ}C$) were investigated. The rheological behavior of corn starch solutions was illustrated by Herschel-Bulkley equation and exhibited pseudoplastic behavior with yield stress. The degree of pseudoplasticity of starch solution increased as the starch concentration increased but was independent on temperature. Apparent viscosity and yield stress of starch solutions were exponentially dependent on concentration and temperature. The critical concentrations for sol-gel transition and for the onset of close-packing of the starch granules were $6.22{\sim}6.52%\;and\;2.68{\sim}2.78%$ respectively.

  • PDF