• Title/Summary/Keyword: Apparent Diffusion Coefficient

Search Result 148, Processing Time 0.026 seconds

Evaluation of Renal Pathophysiological Processes Induced by an Iodinated Contrast Agent in a Diabetic Rabbit Model Using Intravoxel Incoherent Motion and Blood Oxygenation Level-Dependent Magnetic Resonance Imaging

  • Yongfang Wang;Xin Zhang;Bin Wang;Yang Xie;Yi Wang;Xuan Jiang;Rongjia Wang;Ke Ren
    • Korean Journal of Radiology
    • /
    • v.20 no.5
    • /
    • pp.830-843
    • /
    • 2019
  • Objective: To examine the potential of intravoxel incoherent motion (IVIM) and blood oxygen level-dependent (BOLD) magnetic resonance imaging for detecting renal changes after iodinated contrast-induced acute kidney injury (CI-AKI) development in a diabetic rabbit model. Materials and Methods: Sixty-two rabbits were randomized into 2 groups: diabetic rabbits with the contrast agent (DCA) and healthy rabbits with the contrast agent (NCA). In each group, 6 rabbits underwent IVIM and BOLD imaging at 1 hour, 1 day, 2 days, 3 days, and 4 days after an iohexol injection while 5 rabbits were selected to undergo blood and histological examinations at these specific time points. Iohexol was administrated at a dose of 2.5 g I/kg of body weight. Further, the apparent transverse relaxation rate (R2*), average pure molecular diffusion coefficient (D), pseudo-diffusion coefficient (D*), perfusion fraction (f) were calculated. Results: The D and f values of the renal cortex (CO) and outer medulla (OM) were significantly decreased compared to baseline values in the 2 groups 1 day after the iohexol injection (p < 0.05). A marked reduction in the D* values for both the CO and OM was also observed after 1 hour in each group (p < 0.05). In the OM, a persistent elevation of the R2* was detected for 4 days in the DCA group (p < 0.05). Histopathological changes were prominent, and the pathological features of CI-AKI aggravated in the DCA group until day 4. The D, f, and R2* values significantly correlated with the histological damage scores, hypoxia-inducible transcription factor-1α expression scores, and serum creatinine levels. Conclusion: A combination of IVIM and BOLD imaging may serve as a noninvasive method for detecting and monitoring CI-AKI in the early stages in the diabetic kidney.

The Imaging Features of Desmoid Tumors: the Usefulness of Diffusion Weighted Imaging to Differentiate between Desmoid and Malignant Soft Tissue Tumors

  • Lee, Seung Baek;Oh, Soon Nam;Choi, Moon Hyung;Rha, Sung Eun;Jung, Seung Eun;Byun, Jae Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.3
    • /
    • pp.162-170
    • /
    • 2017
  • Purpose: To evaluate the imaging findings of desmoid tumors using various imaging modalities and to evaluate whether diffusion-weighted imaging (DWI) can help differentiate between desmoid and malignant tumors. Materials and Methods: The study included 27 patients with pathologically confirmed desmoid tumors. Two radiologists reviewed 23 computed tomography (CT), 12 magnetic resonance imaging (MRI) and 8 positron emission tomography-computed tomography (PET-CT) scans of desmoid tumors and recorded data regarding the shape, multiplicity, size, location, degree of enhancement, and presence or absence of calcification or hemorrhage. The signal intensity of masses on T1- and T2-weighted imaging and the presence or absence of whirling or band-like low signal intensity on T2-weighted imaging were recorded. The apparent diffusion coefficient (ADC) values of the desmoid tumors in nine patients with DWIs were compared with the ADC values of 32 malignant tumors. The maximum standardized uptake value ($SUV_{max}$) on PET-CT images was measured in 8 patients who underwent a PET-CT. Results: The mean size of the 27 tumors was 6.77 cm (range, 2.5-26 cm) and four tumors exhibited multiplicity. The desmoid tumors were classified by shape as either mass forming (n = 18), infiltrative (n = 4), or combined (n = 5). The location of the tumors was either intra-abdominal (n = 15), within the abdominal wall (n = 8) or extra-abdominal (n = 4). Among the 27 tumors, 21 showed moderate to marked enhancement and 22 showed homogeneous enhancement. Two tumors showed calcifications and one displayed hemorrhage. Eleven of the 12 MR T2-weighted images showed whirling or band-like low signal intensity areas in the mass. The mean ADC value of the desmoid tumors ($1493{\times}10^{-6}mm^2/s$) was significantly higher than the mean of the malignant soft tissue tumors ($873{\times}10^{-6}mm^2/s$, P < 0.001). On the PET-CT images, all tumors exhibited an intermediate $SUV_{max}$ (mean, 3.7; range, 2.3-4.5). Conclusion: Desmoids tumors showed homogenous, moderate to marked enhancement on CT and MRI scans and a characteristic whirling or band-like pattern on T2-weighted images. DWI can be useful for the differentiation of desmoid tumors from malignant soft tissue tumors.

TRANSPORT AND DIFFUSION OF POLLUTANTS IN THE COASTAL WATERS OF ONSAN INDUSTRIAL COMPLEX (온산공단 부근의 해양오염물질 이동)

  • CHANG Sun-duck;LEE Jong-Sub;HAN Kyeong-Hwa
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.151-162
    • /
    • 1980
  • To clarify the dispersion of pollutants introduced in the coastal region, a series of current measurements, the drogue and drift bottle experiments as well as the dye diffusion experiments were carried out in Onsan Bay and in the coastal waters of Ubong-ri near Ulsan. In the southeastern coastal region of Korean peninsula, that is, in the outside of Onsan Bay, the flood tidal current flows south-south-westward, and the ebb current flows north-north-eastward at a maximum speed of 1.0-1.1 knots at spring tide. In an inlet south of Cape Ubong, an anticyclonic eddy of 1 km in diameter is usually formed during both flood and ebb flows. The tidal current predominates in Onsan Bay at around spring tide. The maximum speed around spring tide was observed to be approximately 0.14 knot, while it was slower than 0.1 knot and variable at neap tide when the wind drift current played an important role. The flood tidal current flows westward while the ebb flow flows eastward in the northern region of the bay. The flood tidal current in the southern region of the bay flows west-north-westward, while the ebb current east-north-eastward. Wind drift currents in the coastal region of southern Korea are generally deduced to be southward in winter, the monthly mean speed being approximately 0.1 knot. Dye solution released at the northwestern corner in Onsan Bay was transported by eastward ebb tidal current toward the mouth of the bay dispersing by the wind. The apparent diffusion coefficient at 150 minutes after release in the bay was calculated to be $4.4\times10^4\;cm^2.sec^{-1}$, whereas that in the anticyclonic eddy was more or less smaller.

  • PDF

Diffus ion-Weighted MR Imaging of Spinal Cord Infarction (척수경색의 확산강조자기공명영상)

  • 김윤정;서정진;임남열;정태웅;김윤현;박진균;정광우;강형근
    • Investigative Magnetic Resonance Imaging
    • /
    • v.6 no.2
    • /
    • pp.166-172
    • /
    • 2002
  • Purpose : To evaluate the usefulness of diffusion-weighted imaging(DWI) and quantitative apparent diffusion coefficient (ADC) maps in the patients with spinal cord infarction. Materials and methods : We studied 6 patients presented symptoms with spinal cord infarction, retrospectively (3 men and 3 women). We obtained multi-shot echo planar-based, DWI using 1.5T MR scanner at 5.4 mean days after the onset of ischemic symptoms. In six patients, signal intensity was acquired at conventional b value $1000s/\textrm{mm}^2$). The ADC value for the normal spinal cord and for infarcted lesions was measured from the trace ADC maps by using regions of interest positioned over the spinal cord. We analyzed signal intensity of lesion on MRI and DWI, and compared with ADC values in infarcted lesions and normal site. Results : T1-weighted MR image showed isosignal intensity in four of six patients and low signal intensity in two of six. T2-weighted MR image demonstrated high signal intensity in all of six. All DWI were considered to be diagnostic. All of six depicted a bright signal intensity on DWI. ADC values of infarcted lesion were measured lower than that of normal spinal cord on ADC map. The differences in ADC values between infarcted and normal spinal cord were significantly different (p<0.05). Conclusion : It is possible to obtain DWI and ADC map of the spinal cord and DWI may be useful in the early diagnosis and localization of lesion site in patients with spinal cord infarction.

  • PDF

Quantitative, qualitative Evaluation of Diffusion-Weighted MRI using Optimal b-value(s/mm2) for Female Pelvis (여성골반에 대한 최적의 b-value(s/mm2)를 이용한 확산강조 자기공명영상의 정량적, 성적 평가)

  • Goo, Eun-Hoe
    • Journal of Digital Convergence
    • /
    • v.11 no.1
    • /
    • pp.361-368
    • /
    • 2013
  • The purpose of this study is to know the clinical usefulness of optimal b-values by quantitative, qualitative evaluation of DW-MRI for lesions of benignity and malignity of female pelvis. The b-values used in DWI were 600, 800, 1000, 1200, 1400($s/mm^2$). Mean SNR and CNR of myoma in b-value 800 were the highest result as $84.6{\pm}4.57$(p=0.024) and $50.13{\pm}5.47$(p=0.028), Mean SNR and CNR of cervical cancer were the highest result as $12.0{\pm}2.04$(p=0.047) and $10.6{\pm}1.24$(p=0.001), Mean ADC value in myoma and cervical cancer in b-value 800 were $1.19{\times}10^{-3}mm^2/s$(p=0.008), $0.96{\times}10^{-3}mm^2/s$(p=0.027). As a qualitative analysis, the delineation and conspicuity were the highest result as $4.02{\pm}0.18$(p=0.028), $4.39{\pm}0.25$(p=0.015) on b-value 800. DW-MRI is an important method, and the optimal b values is 800 $s/mm^2$ for differentiation between benign and malignant lesions of female pelvis.

Feasibility of a Clinical-Radiomics Model to Predict the Outcomes of Acute Ischemic Stroke

  • Yiran Zhou;Di Wu;Su Yan;Yan Xie;Shun Zhang;Wenzhi Lv;Yuanyuan Qin;Yufei Liu;Chengxia Liu;Jun Lu;Jia Li;Hongquan Zhu;Weiyin Vivian Liu;Huan Liu;Guiling Zhang;Wenzhen Zhu
    • Korean Journal of Radiology
    • /
    • v.23 no.8
    • /
    • pp.811-820
    • /
    • 2022
  • Objective: To develop a model incorporating radiomic features and clinical factors to accurately predict acute ischemic stroke (AIS) outcomes. Materials and Methods: Data from 522 AIS patients (382 male [73.2%]; mean age ± standard deviation, 58.9 ± 11.5 years) were randomly divided into the training (n = 311) and validation cohorts (n = 211). According to the modified Rankin Scale (mRS) at 6 months after hospital discharge, prognosis was dichotomized into good (mRS ≤ 2) and poor (mRS > 2); 1310 radiomics features were extracted from diffusion-weighted imaging and apparent diffusion coefficient maps. The minimum redundancy maximum relevance algorithm and the least absolute shrinkage and selection operator logistic regression method were implemented to select the features and establish a radiomics model. Univariable and multivariable logistic regression analyses were performed to identify the clinical factors and construct a clinical model. Ultimately, a multivariable logistic regression analysis incorporating independent clinical factors and radiomics score was implemented to establish the final combined prediction model using a backward step-down selection procedure, and a clinical-radiomics nomogram was developed. The models were evaluated using calibration, receiver operating characteristic (ROC), and decision curve analyses. Results: Age, sex, stroke history, diabetes, baseline mRS, baseline National Institutes of Health Stroke Scale score, and radiomics score were independent predictors of AIS outcomes. The area under the ROC curve of the clinical-radiomics model was 0.868 (95% confidence interval, 0.825-0.910) in the training cohort and 0.890 (0.844-0.936) in the validation cohort, which was significantly larger than that of the clinical or radiomics models. The clinical radiomics nomogram was well calibrated (p > 0.05). The decision curve analysis indicated its clinical usefulness. Conclusion: The clinical-radiomics model outperformed individual clinical or radiomics models and achieved satisfactory performance in predicting AIS outcomes.

Diffusion-Weighted Imaging for Differentiation of Biliary Atresia and Grading of Hepatic Fibrosis in Infants with Cholestasis

  • Jisoo Kim;Hyun Joo Shin;Haesung Yoon;Seok Joo Han;Hong Koh;Myung-Joon Kim;Mi-Jung Lee
    • Korean Journal of Radiology
    • /
    • v.22 no.2
    • /
    • pp.253-262
    • /
    • 2021
  • Objective: To determine whether the values of hepatic apparent diffusion coefficient (ADC) can differentiate biliary atresia (BA) from non-BA or be correlated with the grade of hepatic fibrosis in infants with cholestasis. Materials and Methods: This retrospective cohort study included infants who received liver MRI examinations to evaluate cholestasis from July 2009 to October 2017. Liver ADC, ADC ratio of liver/spleen, aspartate aminotransferase to platelet ratio index (APRI), and spleen size were compared between the BA and non-BA groups. The diagnostic performances of all parameters for significant fibrosis (F3-4) were obtained by receiver-operating characteristics (ROCs) curve analysis. Results: Altogether, 227 infants (98 males and 129 females, mean age = 57.2 ± 36.3 days) including 125 BA patients were analyzed. The absolute ADC difference between two reviewers was 0.10 mm2/s for both liver and spleen. Liver ADC value was specific (80.4%) and ADC ratio was sensitive (88.0%) for the diagnosis of BA with comparable performance. There were 33 patients with F0, 15 with F1, 71 with F2, 35 with F3, and 11 with F4. All four parameters of APRI (τ = 0.296), spleen size (τ = 0.312), liver ADC (τ = -0.206), and ADC ratio (τ = -0.288) showed significant correlation with fibrosis grade (all, p < 0.001). The cutoff values for significant fibrosis (F3-4) were 0.783 for APRI (area under the ROC curve [AUC], 0.721), 5.9 cm for spleen size (AUC, 0.719), 1.044 x 10-3 mm2/s for liver ADC (AUC, 0.673), and 1.22 for ADC ratio (AUC, 0.651). Conclusion: Liver ADC values and ADC ratio of liver/spleen showed limited additional diagnostic performance for differentiating BA from non-BA and predicting significant hepatic fibrosis in infants with cholestasis.

Tumor Habitat Analysis Using Longitudinal Physiological MRI to Predict Tumor Recurrence After Stereotactic Radiosurgery for Brain Metastasis

  • Da Hyun Lee;Ji Eun Park;NakYoung Kim;Seo Young Park;Young-Hoon Kim;Young Hyun Cho;Jeong Hoon Kim;Ho Sung Kim
    • Korean Journal of Radiology
    • /
    • v.24 no.3
    • /
    • pp.235-246
    • /
    • 2023
  • Objective: It is difficult to predict the treatment response of tissue after stereotactic radiosurgery (SRS) because radiation necrosis (RN) and tumor recurrence can coexist. Our study aimed to predict tumor recurrence, including the recurrence site, after SRS of brain metastasis by performing a longitudinal tumor habitat analysis. Materials and Methods: Two consecutive multiparametric MRI examinations were performed for 83 adults (mean age, 59.0 years; range, 27-82 years; 44 male and 39 female) with 103 SRS-treated brain metastases. Tumor habitats based on contrast-enhanced T1- and T2-weighted images (structural habitats) and those based on the apparent diffusion coefficient (ADC) and cerebral blood volume (CBV) images (physiological habitats) were defined using k-means voxel-wise clustering. The reference standard was based on the pathology or Response Assessment in Neuro-Oncologycriteria for brain metastases (RANO-BM). The association between parameters of single-time or longitudinal tumor habitat and the time to recurrence and the site of recurrence were evaluated using the Cox proportional hazards regression analysis and Dice similarity coefficient, respectively. Results: The mean interval between the two MRI examinations was 99 days. The longitudinal analysis showed that an increase in the hypovascular cellular habitat (low ADC and low CBV) was associated with the risk of recurrence (hazard ratio [HR], 2.68; 95% confidence interval [CI], 1.46-4.91; P = 0.001). During the single-time analysis, a solid low-enhancing habitat (low T2 and low contrast-enhanced T1 signal) was associated with the risk of recurrence (HR, 1.54; 95% CI, 1.01-2.35; P = 0.045). A hypovascular cellular habitat was indicative of the future recurrence site (Dice similarity coefficient = 0.423). Conclusion: After SRS of brain metastases, an increased hypovascular cellular habitat observed using a longitudinal MRI analysis was associated with the risk of recurrence (i.e., treatment resistance) and was indicative of recurrence site. A tumor habitat analysis may help guide future treatments for patients with brain metastases.

Blood-Brain Barrier Experiments with Clinical Magnetic Resonance Imaging and an Immunohistochemical Study

  • Park, Jun-Woo;Kim, Hak-Jin;Song, Geun-Sung;Han, Hyung-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.3
    • /
    • pp.203-209
    • /
    • 2010
  • Objective : The purpose of study was to evaluate the feasibility of brain magnetic resonance (MR) images of the rat obtained using a 1.5T MR machine in several blood-brain barrier (BBB) experiments. Methods : Male Sprague-Dawley rats were used. MR images were obtained using a clinical 1.5T MR machine. A microcatheter was introduced via the femoral artery to the carotid artery. Normal saline (group 1, n = 4), clotted autologous blood (group 2, n = 4), triolein emulsion (group 3, n = 4), and oleic acid emulsion (group 4, n = 4) were infused into the carotid artery through a microcatheter. Conventional and diffusion-weighted images, the apparent coefficient map, perfusion-weighted images, and contrast-enhanced MR images were obtained. Brain tissue was obtained and triphenyltetrazolium chloride (TTC) staining was performed in group 2. Fluorescein isothiocyanate (FITC)-labeled dextran images and endothelial barrier antigen (EBA) studies were performed in group 4. Results : The MR images in group 1 were of good quality. The MR images in group 2 revealed typical findings of acute cerebral infarction. Perfusion defects were noted on the perfusion-weighted images. The MR images in group 3 showed vasogenic edema and contrast enhancement, representing vascular damage. The rats in group 4 had vasogenic edema on the MR images and leakage of dextran on the FITC-labeled dextran image, representing increased vascular permeability. The immune reaction was decreased on the EBA study. Conclusion : Clinical 1.5T MR images using a rat depicted many informative results in the present study. These results can be used in further researches of the BBB using combined clinical MR machines and immunohistochemical examinations.

An MRI-Based Quantification for Correlation of Imaging Biomarker and Clinical Performance in Chronic Phase of Carbon Monoxide Poisoning

  • Lee, Aleum;Hwang, Ji-sun;Bae, Won-kyung;Park, Jai-soung;Goo, Dong Erk;Park, Sung-Tae
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.3
    • /
    • pp.241-250
    • /
    • 2019
  • Purpose: The purpose of this study was to determine the relation between quantitative magnetic resonance imaging biomarkers, and clinical performances in chronic phase of carbon monoxide intoxication. Materials and Methods: Eighteen magnetic resonance scans and cognitive evaluations were performed, on patients with carbon monoxide intoxication in chronic phase. Apparent diffusion coefficient (ADC) ratios of affected versus unaffected centrum semiovale, and corpus callosum were obtained. Signal intensity (SI) ratios between affected centrum semiovale, and normal pons in T2-FLAIR (fluid-attenuated inversion recovery) images were obtained. The Mini-Mental State Exam, and clinical outcome scores were assessed. Correlation coefficients were calculated, between MRI and clinical markers. Patients were further classified into poor-outcome and good-outcome groups based on clinical performance, and imaging parameters were compared. T2-SI ratio of centrum semiovale was compared, with that of 18 sex-matched and age-matched controls. Results: T2-SI ratio of centrum semiovale was significantly higher in the poor-outcome group, than that in the good-outcome group and was strongly inversely correlated, with results from the Mini-Mental State Exam. ADC ratios of centrum semiovale were significantly lower in the poor outcome group than in the good outcome group, and were moderately correlated with the Mini-Mental State Exam score. Conclusion: A higher T2-SI and a lower ratio of ADC values in the centrum semiovale, may indicate presence of more severe white matter injury and clinical impairment. T2-SI ratio and ADC values in the centrum semiovale, are useful quantitative imaging biomarkers for correlation with clinical performance in individuals with carbon monoxide intoxication.