• Title/Summary/Keyword: Apoptotic pathway

Search Result 540, Processing Time 0.027 seconds

Effects of Citri Reticulatae Viride Pericarpium on the Apoptotic Cell Death in Breast Cancer Cells (청피(靑皮)가 유방암세포의 Apoptosis에 미치는 영향)

  • Kim, Ji-Eun;Park, Soo-Yeon;Choi, Chang-Won;Kim, Kyeong-Soo;Kim, Kyeong-Ok;Wei, Tung-Shuen;Yang, Seung-Joung
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.28 no.2
    • /
    • pp.40-54
    • /
    • 2015
  • Objectives : In the theory of Korean medicine, Citri Reticulatae Viride Pericarpium (CRVP) can soothe the liver to break qi stagnation, eliminate mass and relieve dyspepsia. This study was carried out to investigate the effects of CRVP on the apoptotic cell death in breast cancer cells. Methods : In the present experiment, the effects of CRVP on proliferation rates, type of cell death, cell cycle distribution, and intracellular oxidative stress were investigated using MDA-MB-231 cells in vitro. In addition, the effects on expression levels of caspase 3, caspase 9, Bax and Bcl-2 were also investigated. Results : Treatment with CRVP decreased proliferation rates in a dose dependent manner. ID50 (50% inhibitory dosage) was 175.4 μg/ml. In the CRVP treated group, cell volumes showed smaller than non-treated normal. In addition, CRVP increased percentage of apoptotic and sub G1 arrested cells respectively. 200 μg/ml of CRVP treatment increased intracellular ROS level significantly. Finaly the expression level of caspase 3 and Bax/Bcl-2 ratio were elevated by treatment with CRVP respectively. Conclusions : These results suggest that CRVP can trigger intrinsic apoptotic pathway in MDA-MB-231 cells.

Cytotoxic effects of ethanol extracts of Saussurea lappa mediated by mitochondrial apoptotic pathway

  • Koh Seung-Hee;Ko Seong-Gyu;Jun Chan-Yong;Park Chong-Hyeong
    • The Journal of Korean Medicine
    • /
    • v.25 no.4
    • /
    • pp.79-89
    • /
    • 2004
  • Saussurea lappa and Taraxacum mongolicum have been used for herbal medicinal treatments against cancers in East Asia. We performed this study to understand the molecular basis underlying the anti-tumor effects of two herbs and analyzed the effects of these medicinal herbs on proliferation and on expression of cell growth/apoptosis related molecules by using an AGS gastric cancer cell line. The treatments of Saussurea lappa dramatically reduced cell viabilities in a dose and time-dependent manner, but Taraxacum mongolicum did not. FACS analysis and Annexin V staining assay also showed that Saussurea lappa induces apoptotic cell death of AGS. Expression analyses via RT-PCR and Western blots revealed that Saussurea lappa increased expression of the p53 and its downstream effector p21/sup Waf1/, and that the both increased expression of apoptosis related Bax and cleavage of active caspase-3 protein. We also confirmed the translocation of Bax to mitochondria Collectively, our data demonstrate that Saussurea lappa induces growth inhibition and apoptosis of human gastric cancer cells, and these effects are correlated with down- and up-regulation of growth-regulating apoptotic and tumor suppressor genes, respectively.

  • PDF

Parkin induces apoptotic cell death in TNF-α-treated cervical cancer cells

  • Lee, Kyung-Hong;Lee, Min-Ho;Kang, Yeo-Wool;Rhee, Ki-Jong;Kim, Tae-Ue;Kim, Yoon-Suk
    • BMB Reports
    • /
    • v.45 no.9
    • /
    • pp.526-531
    • /
    • 2012
  • Many malignant tumors become resistant to tumor necrosis factor-alpha (TNF-${\alpha}$)-induced cell death during carcinogenesis. In the present study, we examined whether parkin acts as a tumor suppressor in HeLa cells, a human cervical cancer cell line resistant to TNF-${\alpha}$-induced cell death. TNF-${\alpha}$-treatment alone did not affect HeLa cell viability. However, expression of parkin restored TNF-${\alpha}$-induced apoptosis in HeLa cells. Increased cell death was due to the activation of the apoptotic pathway. Expression of parkin in TNF-${\alpha}$-treated HeLa cells stimulated cleavage of the pro-apoptotic proteins caspase-8, -9, -3, -7 and poly ADP ribose polymerase (PARP). In addition, parkin expression resulted in decreased expression of the caspase inhibitory protein, survivin. These results suggest that parkin acts as a tumor suppressor in human cervical cancer cells by modulating survivin expression and caspase activity. We propose that this pathway is a novel molecular mechanism by which parkin functions as a tumor suppressor.

Protein Kinase B Inhibits Endostatin-induced Apoptosis in HUVECs

  • Kang, Hee-Young;Shim, Dong-Hwan;Kang, Sang-Sun;Chang, Soo-Ik;Kim, Hak-Yong
    • BMB Reports
    • /
    • v.39 no.1
    • /
    • pp.97-104
    • /
    • 2006
  • Endostatin is a tumor-derived angiogenesis inhibitor, and the endogenous 20 kDa carboxyl-terminal fragment of collagen XVIII. In addition to inhibiting angiogenesis, endostatin inhibits tumor growth and the induction of apoptosis in several endothelial cell types. However, the mechanisms that regulate endostatin-induced apoptotic cell death are unclear. Here, we investigated apoptotic cell death and the underlying regulatory mechanisms elicited of endostatin in human umbilical vein endothelial cells (HUVECs). Endostatin was found to induce typical apoptotic features, such as, chromatin condensation and DNA fragmentation in these cells. Thus, as the phosphoinositide 3-OH kinase (PI3K)/protein kinase B (PKB) signaling pathway has been shown to prevent apoptosis in various cell types, we investigated whether this pathway could protect cells against endostatin induced apoptosis. It was found that the inhibition of PI3K/PKB significantly increased endostatin-induced apoptosis, and that endostatin-induced cell death is physiologically linked to PKB-mediated cell survival through caspase-8.

Chloramphenicol Arrests Transition of Cell Cycle and Induces Apoptotic Cell Death in Myelogenous Leukemia Cells

  • KANG KI YOUNG;CHOI CHUL HEE;OH JAE YOUNG;KIM HYUN;KWEON GI RYANG;LEE JE CHUL
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.913-918
    • /
    • 2005
  • Chloramphenicol is a broad-spectrum antimicrobial agent against Gram (+) and Gram (-) bacteria. Its clinical application has recently been limited, due to severe side effects such as bone marrow suppression and aplastic anemia. In the present study, the cytotoxic effects of chloramphenicol were investigated in vitro using chronic myelogenous leukemia K562 cells. Chloramphenicol inhibited the growth of K562 cells in a dose-dependent manner, but their growth was restored after the cessation of chloramphenicol, indicating reversible cytotoxic effects. The expression of cell cycle regulatory molecules, including E2F-1 and cyclin D1, was decreased at the translational and/or transcriptional level after being treated with a therapeutic blood level ($20{\mu}g/ml$) of chloramphenicol. Chloramphenicol also induced apoptotic cell death through a caspase-dependent pathway, which was verified by Western blot analysis and the enzymatic activity of caspase-3. These results demonstrated that chloramphenicol inhibited the cell growth through arresting the transition of the cell cycle, and induced apoptotic cell death through a caspase-dependent pathway at therapeutic concentrations.

Protective Effects of Pyropia yezoensis Glycoprotein against Ethanol-induced Chronic Gastric Injury in the Rat (만성적인 에탄올 섭취로 인한 쥐의 위 조직 손상에서 방사무늬 김(Pyropia yezoensis)의 보호효과)

  • Soma, Saeidi;Choi, Jeong Wook;Lee, Min Kyeong;Kim, Young Min;Kim, In Hye;Nam, Taek Jeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.6
    • /
    • pp.765-769
    • /
    • 2014
  • We examined the protective effects of Pyropia yezoensis glycoprotein (PYGP) against ethanol-induced gastric damage. The experimental animals were divided into four groups. They were treated with distilled water (control), ethanol alone (EtOH), ethanol + PYGP 150 mg/kg BW (EtOH+150), or ethanol + PYGP 300 mg/kg BW (EtOH+300). The groups were treated for 4 weeks. We measured mitogen-activated protein kinase (MAPK), the apoptotic signaling pathway, and PARP activity in gastric tissues obtained from the rats. Ethanol consumption increased apoptotic signal activity and ERK, JNK, and p38 phosphorylation. PYGP reduced the apoptotic signaling pathway activity and ERK, JNK, and p38 phosphorylation. Furthermore, PYGP regulated Bcl-2 family expression. In light of these findings, PYGP appears to prevent ethanol-induced gastric injury and oxidative stress.

Humic Substances Suppresses the Proliferation of TC-1 Cells, the Lung Cancer Cell

  • Eun Ju Yang;Jeong Hyun Chang
    • Biomedical Science Letters
    • /
    • v.29 no.4
    • /
    • pp.280-286
    • /
    • 2023
  • In humic substances, fulvic acid (FA) is a subclass of diverse compounds known as humic substances, which are by-products of organic degradation from microorganisms. FA can suppress the proliferation of tumor cells. Despite numerous studies, the exact mechanism for the various effects of FA is not clearly understood. Based on results demonstrating anti-proliferation effects on human cancer, we investigated whether FA has similar effects on lung cancer in this study. Firstly, the anti-cancer effect of FA in pulmonary epithelial tumor cell lines (TC-1 cells) was examined by confirming its inhibitory effect on the cell proliferation of TC-1 cells. TC-1 cell proliferation was reduced by FA on a dose-dependent and time-dependent manner. After 24 hours of FA treatment, cell morphological changes such as cell volume decrease, non-adherence and increased number of apoptotic cells were clearly observed. In addition, FA induced a DNA ladder pattern by increased of DNA fragments in TC-1 cells. In the intracellular regulatory pathway by FA, we confirmed that FA induced the reduction of the anti-apoptotic protein, Bcl-2 protein levels. These results indicate that FA has anticancer effect by inducing intracellular apoptotic pathway. Further research on the mechanism of anticancer effects will be basic data for the development of potential anticancer drugs.

Enhancement of TRAIL-Mediated Apoptosis by Genistein in Human Hepatocellular Carcinoma Hep3B Cells: Roles of p38 MAPK Signaling Pathway (인체간암세포에서 genistein의 TRAIL에 의한 apoptosis 유도 상승효과에서 미치는 p38 MAPK signaling pathway의 영향)

  • Jin, Cheng-Yun;Park, Cheol;Park, Sang-Eun;Hong, Sang-Hoon;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1549-1557
    • /
    • 2011
  • Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis in many types of transformed cells; however, some human hepatocellular carcinoma cells are particularly resistant to the effects of TRAIL. Although genistein, a natural isoflavonoid phytoestrogen, has been shown to have pro-apoptotic activity against human cancer cell lines, little is known about the mechanism of genistein in terms of TRAIL-induced apoptosis. In the present study, it was investigated whether or not combined treatment with genistein and TRAIL synergistically induced apoptosis in Hep3B hepatocarcinoma cells. Results indicate that treatment with TRAIL in combination with nontoxic concentrations of genistein sensitized TRAIL-resistant Hep3B cells to TRAIL-induced apoptosis, which was associated with mitochondrial dysfunction. Further, the inhibition of p38 mitogen-activated protein kinase (MAPK) activation markedly decreased genistein and TRAIL-induced cell viability and apoptosis by enhanced truncation of Bid, increase of pro-apoptotic Bax, decrease of anti-apoptotic Bcl-2, and release of cytochrome c from mitochondria to cytoplasm. Activation of caspases and degradation of poly (ADP-ribose) polymerase induced by the combined treatment was also markedly increased by the inhibition of p38 MAPK, through the mitochondrial amplification step. In conclusion, our data suggest that genistein sensitizes TRAIL-induced-apoptosis via p38 MAPK-dependent pathway.

Association of a Methanol Extract of Rheum undulatum L. Mediated Cell Death in AGS Cells with an Intrinsic Apoptotic Pathway

  • Hong, Noo Ri;Park, Hyun Soo;Ahn, Tae Seok;Jung, Myeong Ho;Kim, Byung Joo
    • Journal of Pharmacopuncture
    • /
    • v.18 no.2
    • /
    • pp.26-32
    • /
    • 2015
  • Objectives: Rheum undulatum L. has traditionally been used for the treatment of many diseases in Asia. However, its anti-proliferative activity in cancer has still not been studied. In the present study, we investigated the anti-cancer effects of methanol extract of Rheum undulatum L. (MERL) on human adenocarcinoma gastric cell lines (AGS). Methods: To investigate the anti-cancer effect of MERL on AGS cells, we treated the AGS cells with varying concentrations of MERL and performed 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assays. Cell cycle analyses, measurements of the mitochondrial membrane potential (MMP), caspase activity assays and Western blots were conducted to determine whether AGS cell death occurred by apoptosis. Results: Treatment with MERL significantly inhibited growth of AGS cells in a concentration dependent manner. MERL treatment in AGS cells leaded to increased accumulation of apoptotic sub G1 phase cells in a concentration dependent manner. In control cultures, 5.38% of the cells were in the sub G1 phase. In MERL treated cells, however, this percentage was significantly increased (9.95% at $70{\mu}g/mL$, 15.94% at $140{\mu}g/mL$, 26.56% at $210{\mu}g/mL$ and 38.08% at $280{\mu}g/mL$). MERL treatment induced the decreased expression of pro-caspase-8 and -9 in a concentration dependent manner, whereas the expression of the active form of caspase-3 was increased. A subsequent Western blot analysis revealed increased cleaved levels of poly (ADP-ribose) polymerase (PARP) protein. Also, treatment with MERL increased the activities of caspase-3 and -9 compared with the control. MERL treatment increased the levels of the pro-apoptotic truncated Bid (tBid) and Bcl2 Antagonist X (Bax) proteins and decreased the levels of the anti-apoptotic B-cell lymphoma 2 (Bcl-2) protein, whose is the stabilization of mitochondria. However, inhibitions of p38, extracellular signal regulated kinases (ERKs) and C-Jun N-terminal kinases (JNK) by MERL treatment did not affect cell death. Conclusion: These results suggest that MERL mediated cell death is associated with an intrinsic apoptotic pathway in AGS cells.

Induction of Apoptosis by Treatment of Human Prostate Cancer LNCaP Cells with Methanol Fractions from Prunus mume (매실(Prunus mume) 메탄올 분획물의 처리에 따른 인체 전립선암세포 LNCaP의 apoptosis 유도 효과)

  • Kim, Hwi-gon;Kim, Jeong-Ho;Heo, Ji-An;Won, Yeong-Seon;Seo, Kwon-Il
    • Journal of Life Science
    • /
    • v.31 no.3
    • /
    • pp.321-329
    • /
    • 2021
  • This study examined the growth inhibitory effect of the methanol fraction of maesil (Prunus mume) extract (MMF) on LNCaP, PC-3, and RC-58T human prostate cancer cell lines. Among these cell lines, LNCaP was the most sensitive to the inhibitory effects of MMF. Observation of the morphology and apoptotic body formation in the LNCaP cells revealed morphological changes, nuclear damage, and condensation in response to MMF treatment. The suppressive effect of MMF was related to the intrinsic apoptosis pathway, as indicated by increased expression of the pro-apoptotic proteins Bax, capase-3, capase-9, and PARP and decreased expression of the anti-apoptotic protein Bcl-2. Combined treatment with MMF and the AIF inhibitor N-phenylmalemide (N-PM) indicated that MMF treatment alone had a significant growth suppression effect. The involvement of the extrinsic apoptosis pathway was also confirmed by increased expression of AIF and Endo G. The growth suppression effect of MMF was also significant when compared to the effects of a combination of the PI3K inhibitor LY294002 and MMF. The reduced expression of PI3K, p-Akt, and p-mTOR confirmed the involvement of the PI3K/Akt/ mTOR signaling pathway in regulating the anti-proliferative properties of MMF. In conclusion, the growth suppression effect of MMF in the LNCaP human prostate cancer cell line shows the possibility of using this natural product in functional foods.