• Title/Summary/Keyword: Apoptosis signal-regulating kinase 1

Search Result 18, Processing Time 0.023 seconds

Extract of Broussometia kazinoki Induces Apoptosis Through the Mitochondria/Caspase Pathway in A549 Lung Cancer Cells (A549세포에서 닥나무 추출물의 미토콘드리아/Caspase 경로를 통한 Apoptosis 유도작용)

  • Kim, Tae Hyeon;Kim, Dan Hee;Mun, Yeun Ja;Lim, Kyu Sang;Woo, Won Hong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.30 no.3
    • /
    • pp.150-156
    • /
    • 2016
  • Extract of Broussometia kazinoki Rhizodermatis has been traditionally used for geopoong, diuresis, hwalhyeol. In the present study, the apoptotic effect of methanol extract of Broussometia kazinoki (MBK) were investigated. Cell viability of A549 cells was measured by MTT assay. Apoptosis-related protein and MAPK protein levels were measured by Western blot. Chromatin condensation of A549 cells was stained with DAPI. MBK inhibited cell proliferation of A549 cell. Based on DAPI staining, MBK-treated cells manifested nuclear shrinkage, condensation and fragmentation. Treatment of A549 cells with MBK resulted in activation of the caspase-3, -8, -9 and cleavage of poly ADP-ribose polymerase (PARP). In the upstream, MBK increased the expressions Bax and Bak, decreased the expression of Bcl-2, and augmented the Bax/Bcl-2 ratio. MBK-induced apoptosis was accompanied by sustained phosphorylation of JNK, p38 MAPK and apoptosis signal-regulating kinase (ASK)-1. These results suggest that MBK induced apoptosis in A549 cells through Bcl-2 family protein-mediated mitochondria/caspase-3 dependent pathway. In addition, MBK increased the activation of ASK-1, which are critical upsteam signals for JNK/p38 MAPK activation in A549 cancer cells.

Peiminine inhibits myocardial injury and fibrosis after myocardial infarction in rats by regulating mitogen-activated protein kinase pathway

  • Chen, Peng;Zhou, Dengming;Liu, Yongsheng;Wang, Ping;Wang, Weina
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.87-94
    • /
    • 2022
  • Myocardial infarction promotes cardiac remodeling and myocardial fibrosis, thus leading to cardiac dysfunction or heart failure. Peiminine has been regarded as a traditional anti-fibrotic Chinese medicine in pulmonary fibrosis. However, the role of peiminine in myocardial infarction-induced myocardial injury and fibrosis remained elusive. Firstly, rat model of myocardial infarction was established using ligation of the left coronary artery, which were then intraperitoneally injected with 2 or 5 mg/kg peiminine once a day for 4 weeks. Echocardiography and haemodynamic evaluation results showed that peiminine treatment reduced left ventricular end-diastolic pressure, and enhanced maximum rate of increase/decrease of left ventricle pressure (± dP/dt max) and left ventricular systolic pressure, which ameliorate the cardiac function. Secondly, myocardial infarction-induced myocardial injury and infarct size were also attenuated by peiminine. Moreover, peiminine inhibited myocardial infarction-induced increase of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α production, as well as the myocardial cell apoptosis, in the rats. Thirdly, peiminine also decreased the myocardial fibrosis related protein expression including collagen I and collagen III. Lastly, peiminine reduced the expression of p38 and phosphorylation of extracellular signal-regulated kinase 1/2 in rat model of myocardial infarction. In conclusion, peiminine has a cardioprotective effect against myocardial infarction-induced myocardial injury and fibrosis, which can be attributed to the inactivation of mitogen-activated protein kinase pathway.

Superoxide dismutase 3 protects mesenchymal stem cells through enhanced autophagy and regulation of FoxO3a trafficking

  • Agrahari, Gaurav;Sah, Shyam Kishor;Kim, Tae-Yoon
    • BMB Reports
    • /
    • v.51 no.7
    • /
    • pp.344-349
    • /
    • 2018
  • Therapeutic applications of mesenchymal stem cells (MSCs) are limited due to their early death within the first few days of transplantation. Therefore, to improve the efficacy of cell-based therapies, it is necessary to manipulate MSCs so that they can resist various stresses imposed by the microenvironment. Moreover, the role of superoxide dismutase 3 (SOD3) in regulating such survival under different stress conditions remain elusive. In this study, we overexpressed SOD3 in MSCs (SOD3-MSCs) and evaluated its effect under serum starvation conditions. Nutritional limitation can decrease the survival rate of transplanted MSCs and thus can reduce their efficacy during therapy. Interestingly, we found that SOD3-MSCs exhibited reduced reactive oxygen species levels and greater survival rates than normal MSCs under serum-deprived conditions. In addition, overexpression of SOD3 attenuated starvation-induced apoptosis with increased autophagy in MSCs. Moreover, we have demonstrated that SOD3 protects MSCs against the negative effects of serum deprivation via modulation of AMP-activated protein kinase/sirtulin 1, extracellular signal-regulated kinase activation, and promoted Forkhead box O3a trafficking to the nucleus. Taken together, these results demonstrate that SOD3 promotes MSCs survival and add further evidence to the concept that SOD3-MSCs may be a potential therapeutic agent with better outcomes than normal MSCs for various diseases involving oxidative stress and compromised MSCs survival during therapy.

Enhancement of Tumor Response by MEK Inhibitor in Murine HCa-I Tumors (C3H/HeJ 마우스 간암에서 MEK 억제제에 의한 방사선 감수성 향상 효과)

  • Kim, Sung-Hee;Seong, Jin-Sil
    • Radiation Oncology Journal
    • /
    • v.21 no.3
    • /
    • pp.207-215
    • /
    • 2003
  • Purpose: Extracellular signal-regulated kinase (ERK), which is part of the mitogen-activated protin kinase cascade, opposes initiation of the apoptotic cell death which is programmed by diverse cytotoxic stimuli. In this regard, the inhibition of ERK may be useful in improving the therapeutic efficacy of established anticancer agents. Materials and Methods: Murine hepatocarcinoma, HCa-I is known to be highly radioresistant with a TCD50 (radiation dose yield in $50\%$ cure) of more than 80 Gy. Various anticancer drugs have been found to enhance the radioresponse of this particular tumor but none were successful. The objective of this study was to explore whether the selective inhibition of MEK could potentiate the antitumor efficacy of radiation in vivo, particularly in the case on radioresistant tumor. C3H/HeJ mice hearing $7.5\~8\;mm$ HCa-I, were treated with PD98059(intratumoral injection of $0.16\;\mug/50\;\mul$). Results: Downregulation on ERK by PD98059 was most prominent 1h after the treatment. In the tumor growth delay assay, the drug was found to Increase the effect of the tumor radioresponse with an enhancement factor (EF) of 1.6 and 1.87. Combined treatment of 25 Gy radiation with PD98059 significantly increased radiation induced apoptosis. The peak apoptotic index (number on apoptotic nuclei in 1000 nuclei X100) was $1.2\%$ in the case of radiation treatment alone, $0.9\%$ in the case of drug treatment alone and $4.9\%,\;5.3\%$ in the combination treatment group. An analysis of apoptosis regulating molecules with Western blotting showed upregulation of p53, p$p21^{WAF1/CIP1}\;and\;Bcl-X_s$ in the combination treatment group as compared to their levels in either the radiation alone or drug alone treatment groups. The level of other molecules such as $Bcl-X_L4, Bax and Bcl-2 were changed to a lesser extent. Conclusion: The selective inhibition of MEK in combination with radiation therapy may have potential benefit in cancer treatment.

Apoptotic Cell Death by Pectenotoxin-2 in p53-Deficient Human Hepatocellular Carcinoma Cells (종양억제유전자 p53 결손 인체간암세포에서 Pectenotoxin-2에 의한 Apoptosis 유도)

  • Shin, Dong-Yeok;Kim, Gi-Young;Choi, Byung-Tae;Kang, Ho-Sung;Jung, Jee-H.;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.17 no.10
    • /
    • pp.1447-1451
    • /
    • 2007
  • Through the screening of marine natural compounds that inhibit cancer cell proliferation, we previously reported that pectenotoxin-2 (PTX-2) isolated from marine sponges exhibits selective cytotoxicity against several cell lines in p53-deficient tumor cells compared to those with functional p53. However, the molecular mechanisms of its anti-proliferative action on malignant cell growth are not completely known. To further explore the mechanisms of its anti-cancer activity and to test whether the status of p53 in liver cancer cells correlates with their chemo-sensitivities to PTX-2, we used two well-known hepatocarcinoma cell lines, p53-deficient Hep3B and p53-wild type HepG2. We have demonstrated that PTX-2 markedly inhibits Hep3B cell growth and induces apoptosis whereas HepG2 cells are much more resistant to PTX-2 suggesting that PTX-2 seems to act by p53-independent cytotoxic mechanism. The apoptosis induced by PTX-2 in Hep3B cells was associated with the modulation of DNA fragmentation factor (DFF) family proteins, up-regulation of pro-apoptotic Bcl-2 family members such as Bax and Bcl-xS and activation of caspases (caspase-3, -8 and -9). Blockade of the caspase-3 activity by caspase-3 inhibitor, z-DEVD-fmk, prevented the PTX-2-induced growth inhibition in Hep3B cells. Moreover, treatment with PTX-2 also induced phosphorylation of AKT and extracellular-signal regulating kinase (ERK), but not c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MARK). Specific inhibitors of PI3K inhibitor (LY294002) and ERK1/2 inhibitor (PD98059) significantly blocks PTX-2-induced-anti-proliferative effects, whereas a JNK inhibitor (SP600125) and a p38 MAPK inhibitor (SB203580) have no significant effects demonstrating that the pro-apoptotic effect of PTX-2 mediated through activation of AKT and ERK signal pathway in Hep3B cells.

A New Neolignan Derivative, Balanophonin Isolated from Firmiana simplex Delays the Progress of Neuronal Cell Death by Inhibiting Microglial Activation

  • Lim, Soo Young;Subedi, Lalita;Shin, Dongyun;Kim, Chung Sub;Lee, Kang Ro;Kim, Sun Yeou
    • Biomolecules & Therapeutics
    • /
    • v.25 no.5
    • /
    • pp.519-527
    • /
    • 2017
  • Excessive activation of microglia causes the continuous production of neurotoxic mediators, which further causes neuron degeneration. Therefore, inhibition of microglial activation is a possible target for the treatment of neurodegenerative disorders. Balanophonin, a natural neolignoid from Firmiana simplex, has been reported to have anti-inflammatory and anti-cancer effects. In this study, we aimed to evaluate the anti-neuroinflammatory effects and mechanism of balanophonin in lipopolysaccharide (LPS)-stimulated BV2 microglia cells. BV2 microglia cells were stimulated with LPS in the presence or absence of balanophonin. The results indicated that balanophonin reduced not only the LPS-mediated TLR4 activation but also the production of inflammatory mediators, such as nitric oxide (NO), prostaglandin E2 (PGE2), $Interleukin-1{\beta}$ ($IL-1{\beta}$), and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), in BV2 cells. Balanophonin also inhibited LPS-induced inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX2) protein expression and mitogen activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), and p38 MAPK. Interestingly, it also inhibited neuronal cell death resulting from LPS-activated microglia by regulating cleaved caspase-3 and poly ADP ribose polymerase (PARP) cleavage in N2a cells. In conclusion, our data indicated that balanophonin may delay the progression of neuronal cell death by inhibiting microglial activation.

Induction of Nrf2/ARE-mediated cytoprotective genes by red ginseng oil through ASK1-MKK4/7-JNK and p38 MAPK signaling pathways in HepG2 cells

  • Bak, Min Ji;Truong, Van-Long;Ko, Se-Yeon;Nguyen, Xuan Ngan Giang;Jun, Mira;Hong, Soon-Gi;Lee, Jong-Won;Jeong, Woo-Sik
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.423-430
    • /
    • 2016
  • Background: The induction of cellular defensive genes such as phase II detoxifying and antioxidant enzymes is a highly effective strategy for protection against carcinogenesis as well as slowing cancer development. Transcription factor Nrf2 (nuclear factor E2-related factor 2) is responsible for activation of phase II enzymes induced by natural chemopreventive compounds. Methods: Red ginseng oil (RGO) was extracted using a supercritical $CO_2$ extraction system and chemical profile of RGO was investigated by GC/MS. Effects of RGO on regulation of the Nrf2/antioxidant response element (ARE) pathway were determined by ARE-luciferase assay, western blotting, and confocal microscopy. Results: The predominant components of RGO were 9,12-octadecadienoic acid (31.48%), bicyclo[10.1.0] tridec-1-ene (22.54%), and 22,23-dihydrostigmasterol (16.90%). RGO treatment significantly increased nuclear translocation of Nrf2 as well as ARE reporter gene activity, leading to upregulation of heme oxygenase-1 and NAD(P)H:quinone oxidoreductase 1. Phosphorylation of the upstream kinases such as apoptosis signal-regulating kinase (ASK)1, mitogen-activated protein kinase (MAPK) kinase (MKK)4/7, c-Jun N-terminal kinase (JNK), and p38 MAPK were enhanced by treatment with RGO. In addition, RGO-mediated Nrf2 expression and nuclear translocation was attenuated by JNK inhibitor SP600125 and p38 MAPK inhibitor SB202190. Conclusion: RGO could be used as a potential chemopreventive agent, possibly by induction of Nrf2/ARE-mediated phase II enzymes via ASK1-MKK4/7-JNK and p38 MAPK signaling pathways.

Cripto Enhances Proliferation and Survival of Mesenchymal Stem Cells by Up-Regulating JAK2/STAT3 Pathway in a GRP78-Dependent Manner

  • Yun, SeungPil;Yun, Chul Won;Lee, Jun Hee;Kim, SangMin;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.464-473
    • /
    • 2018
  • Cripto is a small glycosylphosphatidylinositol-anchored signaling protein that can detach from the anchored membrane and stimulate proliferation, migration, differentiation, vascularization, and angiogenesis. In the present study, we demonstrated that Cripto positively affected proliferation and survival of mesenchymal stem cells (MSCs) without affecting multipotency. Cripto also increased expression of phosphorylated janus kinase 2 (p-JAK2), phosphorylated signal transducer and activator of transcription 3 (p-STAT3), 78 kDa glucose-regulated protein (GRP78), c-Myc, and cyclin D1. Notably, treatment with an anti-GRP78 antibody blocked these effects. In addition, pretreatment with STAT3 short interfering RNA (siRNA) inhibited the increase in p-JAK2, c-Myc, cyclin D1, and BCL3 levels caused by Cripto and attenuated the pro-survival action of Cripto on MSCs. We also found that incubation with Cripto protected MSCs from apoptosis caused by hypoxia or $H_2O_2$ exposure, and the level of caspase-3 decreased by the Cripto-induced expression of B-cell lymphoma 3-encoded protein (BCL3). These effects were sensitive to down-regulation of BCL3 expression by BCL3 siRNA. Finally, we showed that Cripto enhanced expression levels of vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and hepatocyte growth factor (HGF). In summary, our results demonstrated that Cripto activated a novel biochemical cascade that potentiated MSC proliferation and survival. This cascade relied on phosphorylation of JAK2 and STAT3 and was regulated by GRP78. Our findings may facilitate clinical applications of MSCs, as these cells may benefit from positive effects of Cripto on their survival and biological properties.