• 제목/요약/키워드: Apoptosis induction

Search Result 1,126, Processing Time 0.027 seconds

The Sanguinarine Apoptosis Induction of Hep3B Human Hepatocellular Carcinoma Cells is Dependent on the Activation of Caspase (Sanguinarine에 의한 Hep3B 인체 간암세포의 apoptosis 유도에 관한 연구)

  • Han, Min Ho;Choi, Sung Hyun;Hong, Su Hyun;Park, Dong Il;Choi, ung Hyun
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1340-1348
    • /
    • 2017
  • Sanguinarine is a benzophenanthridine alkaloid derived from the roots of Sanguinaria canadensis L., which is used for the purpose of treating various diseases. Although studies of anticancer activities have been performed using various cancer cell lines, the phenomenon of inducing apoptosis in cancer cells by using sanguinarine requires more research. Therefore, this study investigated the anti-cancer activities and related mechanisms of sanguinarine used with Hep3B human hepatocellular carcinoma cells in terms of the regulation of apoptosis. Sanguinarine inhibited the proliferation of Hep3B cells in a concentration-dependent manner, which was associated with the induction of apoptosis. Sanguinarine also increased the activity of caspase-3, which is a typical effector caspase, and the activities of caspase-8 and caspase-9, which are key when initiating extrinsic and intrinsic apoptosis pathways, respectively. In addition, sanguinarine increased the expression of death receptor-related genes and pro-apoptotic BAX, which belongs to the Bcl-2 family, while suppressing the expression of anti-apoptotic Bcl-2. Sanguinarine promoted the truncation of Bid and enhanced the release of cytochrome c from the mitochondria to the cytoplasm due to a loss of mitochondrial membrane potential. Furthermore, the reduction of a survival rate that was induced by sanguinarine and the induction of apoptosis disappeared with the inhibition of artificial caspase activity. Therefore, the results of the study indicated that sanguinarine-induced apoptosis in Hep3B cells involves both extrinsic and intrinsic pathways; such apoptosis is a caspase-dependent phenomenon.

Growth Inhibitory Activity of Honokiol through Cell-cycle Arrest, Apoptosis and Suppression of Akt/mTOR Signaling in Human Hepatocellular Carcinoma Cells

  • Hong, Ji-Young;Park, Hyen Joo;Bae, KiHwan;Kang, Sam Sik;Lee, Sang Kook
    • Natural Product Sciences
    • /
    • v.19 no.2
    • /
    • pp.155-159
    • /
    • 2013
  • Honokiol, a naturally occurring neolignan mainly found in Magnolia species, has exhibited a potential anti-proliferative activity in human cancer cells. However, the growth inhibitory activity against hepatocellular carcinoma cells and the underlying molecular mechanisms has been poorly determined. The present study was designed to examine the anti-proliferative effect of honokiol in SK-HEP-1 human hepatocellular cancer cells. Honokiol exerted anti-proliferative activity with cell-cycle arrest at the G0/G1 phase and sequential induction of apoptotic cell death. The cell-cycle arrest was well correlated with the down-regulation of checkpoint proteins including cyclin D1, cyclin A, cyclin E, CDK4, PCNA, retinoblastoma protein (Rb), and c-Myc. The increase of sub-G1 peak by the higher concentration of honokiol ($75{\mu}M$) was closely related to the induction of apoptosis, which was evidenced by decreased expression of Bcl-2, Bid, and caspase-9. Hohokiol was also found to attenuate the activation of signaling proteins in the Akt/mTOR and ERK pathways. These findings suggest that the anti-proliferative effect of honokiol was associated in part with the induction of cell-cycle arrest, apoptosis, and dow-nregulation of Akt/mTOR signaling pathways in human hepatocellular cancer cells.

Aspergillus fumigatus-derived demethoxyfumitremorgin C inhibits proliferation of PC3 human prostate cancer cells through p53/p21-dependent G1 arrest and apoptosis induction

  • Kim, Young-Sang;Park, Sun Joo
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • Human prostate cancer is the second most frequently diagnosed cancer worldwide, and its incidence rate continues to increase. Advanced prostate cancer is more difficult to treat than early forms due to its chemotherapy resistance. There is need for more effective agents that can inhibit the progression of advanced prostate cancer. Demethoxyfumitremorgin C (DMFTC) was isolated from the fermentation extract of the marine fungus Aspergillus fumigatus. Antiproliferative activity of DMFTC against human prostate cancer PC3 cells was examined through cell cycle analysis by flow cytometry, the fluorescent nuclear imaging analysis with propidium iodide (PI), and proteins expression related to cell cycle arrest and apoptosis were investigated via Western blotting. DMFTC inhibited PC3 cells growth through G1 phase cell cycle arrest and apoptosis induction. It activated the tumor suppressor p53 and the Cdk inhibitor p21, which regulate the cell progression into the G1 phase. Additionally, PI-positive late apoptotic non-viable cells were increased and the expression levels of the G1-positive downstream regulators cyclin D, cyclin E, Cdk2, and Cdk4 were decreased by DMFTC treatment. These results suggest that DMFTC induces G1 arrest and apoptosis induction through regulation of p53/p21-dependent cyclin-Cdk complexes, and it may be a useful therapeutic agent for the treatment of human advanced prostate cancer.

High glucose diets shorten lifespan of Caenorhabditis elegans via ectopic apoptosis induction

  • Choi, Shin-Sik
    • Nutrition Research and Practice
    • /
    • v.5 no.3
    • /
    • pp.214-218
    • /
    • 2011
  • Diets based on carbohydrates increase rapidly the blood glucose level due to the fast conversion of carbohydrates to glucose. High glucose diets have been known to induce many lifestyle diseases. Here, we demonstrated that high glucose diet shortened the lifespan of Caenorhabditis elegans through apoptosis induction. Control adult groups without glucose diet lived for 30 days, whereas animals fed 10 mg/L of D-glucose lived only for 20 days. The reduction of lifespan by glucose diet showed a dose-dependent profile in the concentration range of glucose from 1 to 20 mg/L. Aging effect of high glucose diet was examined by measurement of response time for locomotion after stimulating movement of the animals by touching. Glucose diet decreased the locomotion capacity of the animals during mid-adulthood. High glucose diets also induced ectopic apoptosis in the body of C. elegans, which is a potent mechanism that can explain the shortened lifespan and aging. Apoptotic cell corpses stained with SYTO 12 were found in the worms fed 10 mg/L of glucose. Mutation of core apoptotic regulatory genes, CED-3 and CED-4, inhibited the reduction of viability induced by high glucose diet, which indicates that these regulators were required for glucose-induced apoptosis or lifespan shortening. Thus, we conclude that high glucose diets have potential for inducing ectopic apoptosis in the body, resulting in a shortened lifespan accompanied with loss of locomotion capacity.

Curcumin Induces Apoptosis in Pre-B Acute Lymphoblastic Leukemia Cell Lines Via PARP-1 Cleavage

  • Mishra, Deepshikha;Singh, Sunita;Narayan, Gopeshwar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.8
    • /
    • pp.3865-3869
    • /
    • 2016
  • Curcumin, a polyphenolic compound isolated from the rhizomes of an herbaceous perennial plant, Curcuma longa, is known to possess anticancerous activity. However, the mechanism of apoptosis induction in cancers differs. In this study, we have (1) investigated the anticancerous activity of curcumin on REH and RS4;11 leukemia cells and (2) studied the chemo-sensitizing potential of curcumin for doxorubicin, a drug presently used for leukemia treatment. It was found that curcumin induced a dose dependent decrease in cell viability because of apoptosis induction as visualized by annexin V-FITC/ PI staining. Curcumin-induced apoptosis of leukemia cells was mediated by PARP-1 cleavage. An increased level of caspase-3, apoptosis inducing factor (AIF), cleaved PARP-1 and decreased level of Bcl2 was observed in leukemia cells after 24h of curcumin treatment. In addition, curcumin at doses lower than the $IC_{50}$ value significantly enhanced doxorubicin induced cell death. Therefore, we conclude that curcumin induces apoptosis in leukemia cells via PARP-1 mediated caspase-3 dependent pathway and further may act as a potential chemo-sensitizing agent for doxorubicin. Our study highlights the chemo-preventive and chemo-sensitizing role of curcumin.

Mangiferin Induces Apoptosis by Regulating Bcl-2 and Bax Expression in the CNE2 Nasopharyngeal Carcinoma Cell Line

  • Pan, Li-Li;Wang, Ai-Yan;Huang, Yong-Qi;Luo, Yu;Ling, Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7065-7068
    • /
    • 2014
  • To investigate the anti-proliferative mechanism of mangiferin in a human nasopharyngeal carcinoma cell line, CNE2 cells were incubated with different concentrations of mangiferin (12.5, 25, 50, 100, 150 and $200{\mu}M$) or with PBS as a control for 72 hours. Analyses were made of the cell cycle and apoptosis with measurement of mRNA and protein levels of two apoptosis-related genes, Bcl-2 and Bax. Flow cytometry assays showed mangiferin could inhibit CNE2 cell proliferation via G2/M arrest and induction of early apoptosis. Real time PCR and Western blotting showed the mRNA and protein level of Bcl-2 to be down-regulated, while those of Bax were upregulated, when CNE2 cells were treated with mangiferin. This investigation indicated anti-proliferation effects of mangiferin through induction of cell apoptosis regulated by Bcl-2 and Bax expression.

Antifungal Activity of Chitosans on Candida albicans and Trichophyton rubrum and its Induction of Apoptosis (키토산의 Candida albicans와 Trichophyton rubrum에 대한 항진균 작용과 Apoptosis 유도작용)

  • Chee, Hee-Youn
    • The Korean Journal of Mycology
    • /
    • v.34 no.2
    • /
    • pp.119-121
    • /
    • 2006
  • The antifungal activity of chitosan ($M.W.\;400,000{\sim}500,000$) and chitooligosaccharide ($M.W.\;3,500{\sim}5,000$) was investigated against Candida albicans and Trichophyton rubrum. Chitosan showed antifungal activity against C. albicans and T. rubrum at 50 and 100 ng/ml, respectively while chitooligosaccharide did not suppress the growth of fungus. The mode of antifungal activity of chitosan was found to be fungicidal activity. In order to investigate the induction of apoptosis by chitosan, exposure of phosphatidylserine on the surface of the cytoplasmic membrane was observed by the FITC-annexin V reaction. The results showed that chitosan induced apoptosis on C. albicans.

Auranofin Suppresses Plasminogen Activator Inhibitor-2 Expression through Annexin A5 Induction in Human Prostate Cancer Cells

  • Shin, Dong-Won;Kwon, Yeo-Jung;Ye, Dong-Jin;Baek, Hyoung-Seok;Lee, Joo-Eun;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.177-185
    • /
    • 2017
  • Auranofin has been developed as antirheumatic drugs, which is currently under clinical development for the treatment of chronic lymphocytic leukemia. Previous report showed that auranofin induced apoptosis by enhancement of annexin A5 expression in PC-3 cells. To understand the role of annexin A5 in auranofin-mediated apoptosis, we performed microarray data analysis to study annexin A5-controlled gene expression in annexin A5 knockdown PC-3 cells. Of differentially expressed genes, plasminogen activator inhibitor (PAI)-2 was increased by annexin A5 siRNA confirmed by qRT-PCR and western blot. Treatment with auranofin decreased PAI-2 and increased annexin A5 expression as well as promoting apoptosis. Furthermore, auranofin-induced apoptosis was recovered by annexin A5 siRNA but it was promoted by PAI-2 siRNA. Interestingly, knockdown of annexin A5 rescued PAI-2 expression suppressed by auranofin. Taken together, our study suggests that induction of annexin A5 by auranofin may enhance apoptosis through suppression of PAI-2 expression in PC-3 cells.

Benzyldihydroxyoctenone, a Novel Nonsteroidal Antiandrogen, Shows Differential Apoptotic Induction in Prostate Cancer Cells in Response to Their Androgen Responsiveness

  • Suh, Hye-Won;Oh, Ha-Lim;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.540-544
    • /
    • 2011
  • The molecular mechanisms of apoptotic induction by benzyldihydroxyoctenone (BDH), a nonsteroidal antiandrogen, isolated from the culture broth of Streptomyces sp., have been previously published in prostate cancer LNCaP cells. Apoptotic induction of BDH-treated LNCaP cells was associated with downregulation of Bcl-xL that caused, in turn, cytochrome c release from mitochondria, and activation of procaspases and specific proteolytic cleavage of poly(ADP-ribose) polymerase (PARP). The purpose of the present study was to investigate the patterns of apoptotic induction by BDH in non-prostate, ovarian cancer PA-1 (androgen-independent and -insensitive) cells and prostate cancer cells with different androgen responsiveness, such as C4-2 (androgen-independent and -sensitive), 22Rv1 (androgen-dependent and -low sensitive), and LNCaP (androgen-dependent and -high sensitive) cells. We found that BDH-treated LNCaP cell proliferation was significantly inhibited in a time-dependent manner and induced apoptosis via downregulation of the androgen receptor (AR) and prostate-specific antigen (PSA), as well as antiapoptotic Bcl-xL protein. However, the levels of BDH-mediated apoptotic induction and growth inhibition in 22Rv1 cells were apparently lower than those of LNCaP cells. In contrast, the induction of apoptosis and antiproliferative effect in BDH-treated non-prostate cancer PA-1 and hormone refractory C4-2 cells were not detectable and marginal, respectively. Therefore, BDH-mediated differential apoptotic induction and growth inhibition in a cell type seem to be obviously dependent on its androgen responsiveness; primarily on androgen-dependency, and then on androgensensitivity.

Induction of Apoptosis and Cell Cycle Arrest by Dorema Glabrum Root Extracts in a Gastric Adenocarcinoma (AGS) Cell Line

  • Jafari, Naser;Zargar, Seyed Jalal;Yassa, Narguess;Delnavazi, Mohammad Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.12
    • /
    • pp.5189-5193
    • /
    • 2016
  • Objective: Dorema glabrum Fisch. & C.A. Mey is a perennial plant that has several curative properties. Anti-proliferative activity of seeds of this plant has been demonstrated in a mouse fibrosarcoma cell line. The aim of the present study was to evaluate cytotoxicity of D. glabrum root extracts in a human gastric adenocarcinoma (AGS) cell line and explore mechanisms of apoptosis induction, cell cycle arrest and altered gene expression in cancer cells. Materials and Methods: The MTT assay was used to evaluate IC50 values, EB/AO staining to analyze the mode of cell death, and flow cytometry to assess the cell cycle. Quantitative real-time polymerase chain reaction (qRT-PCR) amplification was performed with apoptosis and cell cycle-related gene primers, for cyclin D1, c-myc, survivin, VEGF, Bcl-2, Bax, and caspase-3 to determine alteration of gene expression. Results: Our results showed that n-hexane and chloroform extracts had greatest toxic effects on gastric cancer cells with IC50 values of $6.4{\mu}g/ml$ and $4.6{\mu}g/ml$, respectively, after 72 h. Cell cycle analysis revealed that the population of treated cells in the G1 phase was increased in comparison to controls. Cellular morphological changes indicated induction of apoptosis. In addition, mRNA expression levels of Bax and caspase-3 were increased, and of bcl-2 survivin, VEGF, c-myc and cyclin D1 were decreased. Conclusion: Our study results suggest that D. glabrum has cytotoxic effects on AGS cells, characterized by enhanced apoptosis, reduced cell viability and arrest of cell cycling.