• Title/Summary/Keyword: Aperture Matching Method

Search Result 24, Processing Time 0.019 seconds

Radiation from a Cavity-Backed Circular Aperture Surrounded by Concentric Corrugations

  • Kim, Ji Hyung;Song, Sung Chan;Park, Yong Bae
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.880-885
    • /
    • 2017
  • Radiation from a cavity-backed circular aperture surrounded by concentric corrugations is studied. An electromagnetic boundary-value problem of the cavity-backed circular aperture surrounded by concentric corrugations is solved by using the Green's function, Hankel transform, and mode matching method. The radiated fields are computed in terms of corrugation geometry to illustrate radiation behaviors and measured to validate our computation. The effects of the corrugation geometries on the radiation are discussed.

Design of a Antenna with Enhanced Isolation for US-PCS Indoor Repeater (격리도가 향상된 US-PCS 대역 댁내용 중계기 안테나 설계)

  • Ahn Jung-Sun;Lee Jin-Sung;Jung Byung-Woon;Lee Byungje
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.1 s.92
    • /
    • pp.9-18
    • /
    • 2005
  • This paper presents an antenna for US-PCS band indoor repeaters with enhancement of isolation. In common repeaters require an enough isolation to reduce the interferences between transmitted and received signals. Thus, it is investigated to improve front-to-back ratio of IBD(Integrated Balun Dipole) antenna which has a good linear polarization with a cavity or multi-cavity by using polarization diversity and aperture matching method. From the simulated and measured results, the antenna realized by using polarization diversity and aperture matching method has a VSWR below 1.5, gain over 8 dBi and enhanced isolation of 15$\~$24 dB in US-PCS band.

Efficient Fusion Method to Recognize Targets Flying in Formation (편대비행 표적식별을 위한 효과적인 ISAR 영상 합성 방법)

  • Kim, Min;Kang, Ki-Bong;Jung, Joo-Ho;Kim, Kyung-Tae;Park, Sang-Hong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.8
    • /
    • pp.758-765
    • /
    • 2016
  • This paper proposes a novel method for the recognition of the inverse synthetic aperture radar(ISAR) image of multiple targets flying in formation. Rather than separating the ISAR image of each target, the proposed method combines an ISAR image obtained by fusing the ISAR images in the training database. Fusion is conducted by optimizing the non-linear problem whose parameters are the aspect angle and the target location. Assuming that the aspect angle is properly estimated, the proposed method estimates the number of the targets and their locations by optimizing the template matching using PSO. In simulations using the F-16 scale model, the efficiency of the proposed method was demonstrated by yielding the ISAR image identical to that of targets in formation.

UTD-Supplemented Mode-matching Method Analysis of High-Frequency Wave Coupling into Large Parallel Plate Waveguides (모스정합을 결합한 UTD에 의한 큰 평행도파관의 고주파간섭 해석)

  • 권도훈;선영식;명노훈
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.10
    • /
    • pp.48-53
    • /
    • 1994
  • The problem of a plane wave impinging upon a semi-infinite paralle-plate waveguide is investigated. The interior fields can be analyzed by converting the initial field into vaveguide modes. Kirchhoff approximation is usually made at the waveguide aperture in the literature. In this paper, a modified approximation is made using the Uniform Gemetrical Theory of Diffraction(UTD). Numerical results show excellent agreement between UTD-supplemented mode-matching solution and UTD solution.

  • PDF

GTD Analysis of Electromagnetic Plane Wave Scattering by Open-Ended Parallel Plate Waveguide with a Slanted Terminator Inside (GTD를 이용한 경사진 벽으로 막힌 평행도파관의 전자파 산란 해석)

  • 선영식;명노훈
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.11
    • /
    • pp.19-24
    • /
    • 1992
  • In this paper, a high frequency method is developed which combines the uniform Geometrical Theory of Diffraction(GTD) and the Aperture Integration(AI) to analyze electromagnetic plane wave scattering by a perfectly-conducting, open-ended, semi-infinite parallel plate waveguide with a uniform layer of absorbing material on its inner wall, and with a slanted planar termination inside. In this method, first, the field of an arbitary point inside the paraller plate waveguide is computed by the GTD. Second, the field scattered into exterior region by the waveguide is found using the equivalent current, which can be obtaind from the aperture field of the waveguide and using the AI. Numerical results based on this GTD method are presented and compared with those based on the mode matching method.

  • PDF

Performance Analysis of Automatic Target Recognition Using Simulated SAR Image (표적 SAR 시뮬레이션 영상을 이용한 식별 성능 분석)

  • Lee, Sumi;Lee, Yun-Kyung;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.283-298
    • /
    • 2022
  • As Synthetic Aperture Radar (SAR) image can be acquired regardless of the weather and day or night, it is highly recommended to be used for Automatic Target Recognition (ATR) in the fields of surveillance, reconnaissance, and national security. However, there are some limitations in terms of cost and operation to build various and vast amounts of target images for the SAR-ATR system. Recently, interest in the development of an ATR system based on simulated SAR images using a target model is increasing. Attributed Scattering Center (ASC) matching and template matching mainly used in SAR-ATR are applied to target classification. The method based on ASC matching was developed by World View Vector (WVV) feature reconstruction and Weighted Bipartite Graph Matching (WBGM). The template matching was carried out by calculating the correlation coefficient between two simulated images reconstructed with adjacent points to each other. For the performance analysis of the two proposed methods, the Synthetic and Measured Paired Labeled Experiment (SAMPLE) dataset was used, which has been recently published by the U.S. Defense Advanced Research Projects Agency (DARPA). We conducted experiments under standard operating conditions, partial target occlusion, and random occlusion. The performance of the ASC matching is generally superior to that of the template matching. Under the standard operating condition, the average recognition rate of the ASC matching is 85.1%, and the rate of the template matching is 74.4%. Also, the ASC matching has less performance variation across 10 targets. The ASC matching performed about 10% higher than the template matching according to the amount of target partial occlusion, and even with 60% random occlusion, the recognition rate was 73.4%.

Approximate Method of Transmission Lines Crossing a Rectangular Aperture in a Backplane (백 플레인의 사각형 개구를 관통하는 전송 선로의 근사 해석법)

  • Jung, Sung-Woo;Choi, Beom-Jin;Choi, Bong-Yeol;Kim, Ki-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.9
    • /
    • pp.1056-1064
    • /
    • 2010
  • This paper presents the approximate analysis method for the symmetric transmission line crossing the aperture in an backplane. The method of moments is used to determine the aperture impedance for the construction of the equivalent transmission line that the aperture impedance apply to the transmission line as the shunt impedance. As the results, the insertion loss increases at the specific frequency range for the impedance matching. In the case of the mismatching, we are confirmed to the insertion gain at the specific frequency. Also the horizontal length of the aperture affects to the transmission line better than vertical length. The measurement of the insertion loss is performed to verify the theoretical analysis.

Millimeter-Wave(W-Band) Forward-Looking Super-Resolution Radar Imaging via Reweighted ℓ1-Minimization (재가중치 ℓ1-최소화를 통한 밀리미터파(W밴드) 전방 관측 초해상도 레이다 영상 기법)

  • Lee, Hyukjung;Chun, Joohwan;Song, Sungchan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.8
    • /
    • pp.636-645
    • /
    • 2017
  • A scanning radar is exploited widely such as for ground surveillance, disaster rescue, and etc. However, the range resolution is limited by transmitted bandwidth and cross-range resolution is limited by beam width. In this paper, we propose a method for super-resolution radar imaging. If the distribution of reflectivity is sparse, the distribution is called sparse signal. That is, the problem could be formulated as compressive sensing problem. In this paper, 2D super-resolution radar image is generated via reweighted ${\ell}_1-Minimization$. In the simulation results, we compared the images obtained by the proposed method with those of the conventional Orthogonal Matching Pursuit(OMP) and Synthetic Aperture Radar(SAR).

Entropy-Based 6 Degrees of Freedom Extraction for the W-band Synthetic Aperture Radar Image Reconstruction (W-band Synthetic Aperture Radar 영상 복원을 위한 엔트로피 기반의 6 Degrees of Freedom 추출)

  • Hyokbeen Lee;Duk-jin Kim;Junwoo Kim;Juyoung Song
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1245-1254
    • /
    • 2023
  • Significant research has been conducted on the W-band synthetic aperture radar (SAR) system that utilizes the 77 GHz frequency modulation continuous wave (FMCW) radar. To reconstruct the high-resolution W-band SAR image, it is necessary to transform the point cloud acquired from the stereo cameras or the LiDAR in the direction of 6 degrees of freedom (DOF) and apply them to the SAR signal processing. However, there are difficulties in matching images due to the different geometric structures of images acquired from different sensors. In this study, we present the method to extract an optimized depth map by obtaining 6 DOF of the point cloud using a gradient descent method based on the entropy of the SAR image. An experiment was conducted to reconstruct a tree, which is a major road environment object, using the constructed W-band SAR system. The SAR image, reconstructed using the entropy-based gradient descent method, showed a decrease of 53.2828 in mean square error and an increase of 0.5529 in the structural similarity index, compared to SAR images reconstructed from radar coordinates.

Road Detection in the Spaceborne Synthetic Aperture Radar Images (위성 탑재 합성개구 레이더 영상에서의 도로 검출)

  • Chun, Sung-Min;Hong, Ki-Sang
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.11
    • /
    • pp.123-132
    • /
    • 1998
  • This paper presents a road detection technique for spaceborne synthetic aperture radar (SAR) images. Roads are important cartographic features. We incorporate an active contour model called snake as a model for the road and define a new external energy for snake which is appropriate for the road. Detecting roads in spaceborne SAR images is very difficult without other information. In this paper, digital maps are utilized to obtain the initial position and shape for snake. Only approximate geodetic location of roads appearing in SAR images can be known through geocoding process and usual digital maps also have location errors. Therefore, there exist large location offsets between the two data. By introducing initial matching procedure, the errors are reduced significantly. Then we initialize the snake's shape using the roads extracted from digital map and minimize the energies of all snake points to detect roads. We outline two problems in detection and propose a method that mitigates them.

  • PDF