Journal of the Korean Professional Engineers Association
/
v.38
no.4
/
pp.7-9
/
2005
The recent speculation fever in Kangnam and its southern vicnity of Seoul resulted in surging apartment prices. The government is determined to employ more effective anti-speculation policy measures to control the property speculative demand. The Government plans to implement support measures to discourage people from owning multiple homes by reinforcing tax measures. To meet the increasing demand for more large-sized apartments in Seoul, the Government may allow to build more large sized units. By the end of August, 'a comprehensive package tool of real estate policy measures' ,as a real estate controlling guidelines, is scheduled to be presented by the Government. We hope that the package tool will stabilize housing market more effectively and enhance the national economy.
Journal of the Korea Institute of Building Construction
/
v.22
no.1
/
pp.81-90
/
2022
With apartment purchase prices rising, small and medium-sized cities have been highlighted as areas in which real estate speculation is overheated, and thus designated as target districts for adjustment. In addition, tax policy is constantly being adjusted in an attempt to stabilize real estate prices. The purpose of this study is to analyze the basic effect of tax policy on the purchase price of apartments in small and medium-sized cities. This study selected apartments in the Daejeon area that were constructed between 1990 and 2015. In addition, tax policy was divided into regulatory policy and easing policy based on tax increase and tax cut. This study analyzes the short-term difference of one year before and after the change in the purchase price of apartment houses. In addition, this study set the time when real estate policy was implemented and the actual transaction price of apartments in Daejeon as the analysis targets, and analyzed the correlation between tax policy and apartment sales prices through the NPV technique and T-test results. Through the study, it was found that most tax policies changed apartment purchase prices in the short term.
The purpose of this study is to identify the impact of the building, site, and region characteristic factors on the annual average price rising rate of apartment housing in Seoul. The data were consisted of 272 apartment units in Seoul. A survey included checking the drawing documents and interview with apartment maintenance staffs and real estate agencies from October 2006 to February 2007. Data were analyzed with descriptives, frequency, crosstabs, and linear regression by SPSS/PC for Window. The linear regression model was employed to evaluate the price rising rate in apartment housing. Following results were obtained. The price rising rate for pyeong ($3.3m^2$) of apartment housing was determinated by the district zone, the construction company's brand name, the building age, the building stories, the floor space index, the building-to-land ratio, the green space rate, and the distance from the downtown. Especially, the district zone was the most important factor that affected the price rising of apartment housing in Seoul. Therefore, the policy has to focus to solve the imbalance between autonomous districts with the collaborated tax.
This paper aims to analyze characteristic by the cities focused on the ratio of new apartment resale that is one of the apartment unit sale market, which has been increased recently. So, this study examined characteristics of population, apartment trade & sale, housing with 162 cities and counties and performed multiple regression analysis with dependent variable, ratio of new apartment resale. As a result. the factors affecting the ratio of new apartment resale are 7variables, apartment sales rate, transfer of ownership, apartment turnover rate, sale volume, regional apartment rate, population increasing rate, housing average apartment sale price rate. In terms of the increase in apartment sales prices, the rate of sales price increase was relatively low in areas where the transaction rate for apartment sales is high, and the number of apartment sales right transactions increased as the number of other ownership transfers rose. As a result, the data will be based on the improvement of the government's policies and systems to stimulate the transaction focused on the real estate agents in the apartment market.
International Journal of Advanced Culture Technology
/
v.10
no.1
/
pp.274-283
/
2022
Korea is facing a number difficulties arising from rising housing prices. As 'housing' takes the lion's share in personal assets, many difficulties are expected to arise from fluctuating housing prices. The purpose of this study is creating housing price prediction model to prevent such risks and induce reasonable real estate purchases. This study made many attempts for understanding real estate instability and creating appropriate housing price prediction model. This study predicted and validated housing prices by using the LSTM technique - a type of Artificial Intelligence deep learning technology. LSTM is a network in which cell state and hidden state are recursively calculated in a structure which added cell state, which is conveyor belt role, to the existing RNN's hidden state. The real sale prices of apartments in autonomous districts ranging from January 2006 to December 2019 were collected through the Ministry of Land, Infrastructure, and Transport's real sale price open system and basic apartment and commercial district information were collected through the Public Data Portal and the Seoul Metropolitan City Data. The collected real sale price data were scaled based on monthly average sale price and a total of 168 data were organized by preprocessing respective data based on address. In order to predict prices, the LSTM implementation process was conducted by setting training period as 29 months (April 2015 to August 2017), validation period as 13 months (September 2017 to September 2018), and test period as 13 months (December 2018 to December 2019) according to time series data set. As a result of this study for predicting 'prices', there have been the following results. Firstly, this study obtained 76 percent of prediction similarity. We tried to design a prediction model of real estate transaction price with the LSTM Model based on AI and Bigdata. The final prediction model was created by collecting time series data, which identified the fact that 76 percent model can be made. This validated that predicting rate of return through the LSTM method can gain reliability.
Proceedings of the Korean Institute Of Construction Engineering and Management
/
autumn
/
pp.543-548
/
2002
The brand value of apartment which affects not only sale percent and profit but also the worth of real estate is rising as an important point of apartment competition. But now the apartment brand market is occupied by some large-sized construction companies with strong recognition. So it's difficult for newly joined construction companies to enter the apartment market and the companies that made inroads into the market don't have the brand effects because of consumers' ignorance. Therefore, through the analysis of example from construction and industrial companies, I suggest the marketing strategy which consists of target market, positioning strategy, brand naming strategy, PR strategy and distinct strategy.
Thanks to the recent apartment housing sales in new cities and metropolitan area, the public-use furniture market is greatly animated with the development of customized furniture. Nevertheless, the situation becomes difficult because of the fierce competition among the furniture suppliers with quoting at the lower price to get the order. In order to produce unique and stylish living cabinets, it is required for the furniture designer to create the design under the systematic design process collaborated with the construction company and make the design proposal thereby to the construction company. The present paper is focused on the re-usability of TV set currently possessed by the tenant, variability, uniqueness, pricing level suitable for the cost of real estate sales, modern design and so on. in the development of apartment living room cabinet. Thus, it is important for the furniture supplier to realize the importance of the design field in order to enhance the competitiveness of the customized furniture in the apartment housing. Accordingly the present researcher has developed the modem variable living room cabinet in accordance with the systemic design process by realizing the leads of tenant of the apartment housing and then establishing the concept focused on the design required by both the tenant and construction company.
Journal of the Korean Regional Science Association
/
v.39
no.2
/
pp.47-61
/
2023
Satisfaction on the residential environment is a major factor influencing the choice of residence and migration, and is directly related to the quality of life in the city. As online services of real estate increases, people's evaluation on the residential environment can be easily checked and it is possible to analyze their satisfaction and its determining factors based on their evaluation. This means that a larger amount of evaluation can be used more efficiently than previously used methods such as surveys. This study analyzed the residential environment reviews of about 30,000 apartment residents collected from 'Zigbang', an online real estate service in Seoul. The apartment review of Zigbang consists of an evaluation grade on a 5-point scale and the evaluation content directly described by the dweller. At first, this study labeled apartment reviews as positive and negative based on the scores of recommended reviews that include comprehensive evaluation about apartment. Next, to classify them automatically, developed a model by using Bidirectional Encoder Representations from Transformers(BERT), a deep learning-based natural language processing model. After that, by using SHapley Additive exPlanation(SHAP), extract word tokens that play an important role in the classification of reviews, to derive determining factors of the evaluation of the residential environment. Furthermore, by analyzing related keywords using Word2Vec, priority considerations for improving satisfaction on the residential environment were suggested. This study is meaningful that suggested a model that automatically classifies satisfaction on the residential environment into positive and negative by using apartment review big data and deep learning, which are qualitative evaluation data of residents, so that it's determining factors were derived. The result of analysis can be used as elementary data for improving the satisfaction on the residential environment, and can be used in the future evaluation of the residential environment near the apartment complex, and the design and evaluation of new complexes and infrastructure.
Korean Journal of Construction Engineering and Management
/
v.7
no.2
s.30
/
pp.162-170
/
2006
Neural network analysis is expected to enhance the forecasting ability for the real estate market. This paper reviews definition, structure, strengths and weaknesses of neural network analysis, and verifies the applicability of neural network analysis for the real estate market. Neural network analysis is compared with regression analysis using the same sample data. The analyses model the macroeconomic parameters that influence the sales price of apartments. The results show that neural network analysis provides better forecasting accuracy than regression analysis does, what confirms the applicability of neural network analysis for the real estate market.
The Journal of the Korea institute of electronic communication sciences
/
v.8
no.2
/
pp.301-306
/
2013
The Ratio of APT jeonse to purchase price was still rising. The interaction of APT Purchase and Jeonse price indices by region analysis in order to analyze this phenomenon, and results were summarized as follows. First, because the regional APT purchase and jeonse prices appears the rise and fall differently by region, regional polarization was deepening. Second, the recently real estate market was analyzed the province's booming real estate and the downturn of the metropolitan area. So, the ratio of APT jeonse to purchase price was continued to rise. Finally, the Ratio of APT jeonse to purchase price changing rate is (+) increased if the APT purchase price changing rate is larger then the APT purchase price changing rate and smaller then is (-) decreased.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.