• Title/Summary/Keyword: Antisense inhibition

Search Result 30, Processing Time 0.023 seconds

Effects of Circular Type TGF-$\beta$1 Antisense Oligonucleotides on Anti-Thy-1 Glomerulonephritis

  • Han, Sang-Mi;Lee, Kwang-Gill;Yeo, Joo-Hong;Kweon, Hae-Yong;Woo, Soon-Ok;Park, Kwan-Kyu
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 2003.10a
    • /
    • pp.145-146
    • /
    • 2003
  • Overproduction of transforming growth factor (TGF)-$\beta$l has been implicated in the pathogenesis of fibrotic diseases. TGF-$\beta$l plays a crucial role in the accumulation of extracellular matrix (ECM) in human and experimental glomerular diseases. However, it remains unclear whether inhibition of TGF- $\beta$l overproduction would suppress TGF- $\beta$l induced ECM accumulation. To inhibit the overproduction of TGF- $\beta$l in experimental glomerulonephritis induced by anti-Thy 1.1 antibody, we introduced antisense oligodeoxynucleotides (ODN) fur TGF- $\beta$l into the nephritic kidney by the HVJ-liposome-mediated gene transfer method. (omitted)

  • PDF

Inhibition of Starch Biosynthesis by Antisense Expression of cDNAs Encoding ADP-Glucose Pyrophosphorylase Small Subunit in Sweetpotato (고구마에서 ADP-Glucose Pyrophosphorylase Small Subunit cDNA의 Antisense 발현에 의한 전분생합성 저해)

  • Min, Sung-Ran;Bae, Jung-Myung;Harn, Chee-Hark;Jeong, Won-Joong;Lee, Young-Bok;Liu, Jang-Ryol
    • Journal of Plant Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.277-283
    • /
    • 2007
  • Embryogenic calluses derived from shoot apical meristem explants of sweetpotato were subjected to particle bombardment to generate transgenic plants for antisense expression of cDNAs encoding two different AGPase small subunit (ibAGP1 and ibAGP2). Plants were generated via somatic embryogenesis. PCR and Southern analysis demonstrated that the incorporation of ibAGP1 and ibAGP2 into the genome in an antisense orientation. Immunoblot analysis confirmed reduced levels of AGPase small subunit in transgenic plant leaves. Plants with both ibAGP1 and ibAGP2 produced a lower level of the protein than plants with ibAGP1 alone. iodine test demonstrated that transgenic plant leaves and storage root accumulated reduced amounts of starch. Iodine staining of leaf tissues indicated that transgenic plants accumulated less amount of starch than control. In accordance with western blot analysis, plants with both ibAGP1 and ibAGP2 accumulated a lower amount of starch than plants with ibAGP1 alone. Both transgenic plants exhibited a severely retarded growth, resulting in bare survival. It is suggested that disrupted expression of the gene encoding AGPase small subunit is lethal to the growth of sweetpotato contrast to other species including potato.

Yak-kong and Soybean Induced Expression of Osteoprotegerin in MG-63 Human Osteoblastic Cells Requires Estrogen Receptor-$\beta$

  • Kim, Jin-Young;Cho, Yun-Hi
    • Nutritional Sciences
    • /
    • v.8 no.3
    • /
    • pp.159-168
    • /
    • 2005
  • Phytoestrogens, especially Yak-kong or soybean-derived isoflavones have been traditionally used as a supplement of estrogen for preventing postmemopausal osteoporosis in oriental folk medicine. In our previous study, the treatment of Yak-kong and soybean increased estrogen receptor-a (ERa) expression and proliferation of MG-63 osteoblastic cells. In contrast, the increase of estrogen receptor-$\beta$ (ER$\beta$) expression in proliferating MG-63 cells with Yak-kong and soybean treatment was less pronounced, which suggested that ER$\beta$ may play a role rather in the regulation of bone cell differentiation To determine the role of ER$\beta$ in Yak-kong or soybean mediated regulation of bone cell differentiation, we established MG-63 cell lines stably expressing either ER$\beta$ or antisense ER$\beta$ RNAs. Increased expression of ER$\beta$ did not affect ERa expression and proliferation of MG-63 cells. However, increased expression of ER$\beta$ in MG-63 cells (ER$\beta$-MG63 cells) selectively enhanced Yak-kong or soybean induced expression of osteoprotegerin (OPG), a novel soluble glycoprotein which is secreted from osteoblasts and mediates the signal for osteoclast differentiation. Inhibition of ER$\beta$ expression by antisense ER$\beta$ RNAs (As-ER$\beta$-MG63) caused these cells to insensitize Yak-kong or soybean induced expression of OPG but increased MG-63 cell proliferation. Furthermore, the comparable effects between Yak-kong and the combined treatment of genistein and daidzein at $0.5{\times}l0^{-8}$ M, which is a concentration of these two isoflavones similar to Yak-kong at 0.001 mg/mL, on OPG expression in ER$\beta$-MG63 cell demonstrate that the enhanced expression of OPG with Yak-kong treatment is mediated by the synergistic effect of low leveled isoflavones in the extracts. Together, coupled with low level of ER expression in osteoclasts, our data demonstrate that ER$\beta$ in osteoblasts plays an important role in Yak-kong and soybean mediated inhibition of osteoclast differentiation indirectly by enhancing the expression of OPG.

Involvement of NAD(P)H Oxidase in a Potential Link between Diabetes and Vascular Smooth Muscle Cell Proliferation

  • Jeong, Hye-Young;Yun, Mi-Ran;Kim, Chi-Dae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.2
    • /
    • pp.103-109
    • /
    • 2003
  • The cellular mechanisms that contribute to the acceleration of atherosclerosis in diabetes are poorly understood. Therefore, the potential mechanisms involved in the diabetes-dependent increase in vascular smooth muscle cell (VSMC) proliferation was investigated. Using primary culture of VSMC from streptozotocin-induced diabetic rat aorta, cell proliferation assay showed two-fold increase in cell number accompanied with enhanced superoxide generation compared to normal VSMC, 2 days after plating. Both the increased superoxide production and cell proliferation in diabetic VSMC were significantly attenuated by not only tiron (1 mM), a superoxide scavenger, but also by diphenyleneiodonium (DPI; $10{\mu}M$), an NAD(P)H oxidase inhibitor. NAD(P)H oxidase activity in diabetic VSMC was significantly higher than that in control cell, accompanied with increased mRNA expression of p22phox, a membrane subunit of oxidase. Furthermore, inhibition of p22phox expression by transfection of antisense p22phox oligonucleotides into diabetic VSMC resulted in a decrease in superoxide production, which was accompanied by a significant inhibition of cell proliferation. Based on these results, it is suggested that diabetes-associated increase in NAD(P)H oxidase activity via enhanced expression of p22phox contributes to augmented VSMC proliferation in diabetic rats.

Studies on the Regulation of Nitric oxide Synthesis in Murine Mononuclear Phagocytes (마우스 단핵 탐식 세포에서 Nitric oxide 생성의 조절 기전에 관한 연구)

  • 최병기;김수응
    • Environmental Analysis Health and Toxicology
    • /
    • v.15 no.3
    • /
    • pp.69-80
    • /
    • 2000
  • ADP-rubosylation may be involved in the process of macrophage activation. Nitric oxide (NO) has emerged as an important intracellular and interacellular regulatory molecule with function as diverse as vasodilation, neural communication or host defense. NO is derived from the oxidation of the terminal guanidino nitrogen atom of L-arginine by the NADPH -dependent enzyme, nitric oxide synthase (NOS) which is one of the three different isomers in mammalian tissues. Since NO can exert protective or regulatory functions in the cell at a low concentration while toxic effects at higher concentrations, its role may be tightly regulated in the cell. Therefore, this paper was focused on signal transduction pathway of NO synthesis, role of endogenous TGF-$\beta$ in NO production. effect of NO on superoxide formation. Costimulation of murine peritoneal macrophages with interferon-gamma (IFN-γ) and phorbol 12-myristate 13-acetate (PMA) increased both NO secretion and mRNA expression of inducible nitric oxide synthase (iNOS) when PMA abolished costimulation. Pretreatmnet of the cells with PMA abolished costimuation effects due to the depletion of protein kinase C (PKC) activities . The involvement of PKC in NO secretion could be further confirmed by PKC inhibitor, stauroprine, and phorbol ester derivative, phorbol 12,13-didecanoate. Addition of actinomycine D in IFN-γ plus PMA stimulated cells inhibited both NO secretion and mRNA expression of iNOS indication that PMA stabilizes mRNA of iNOS . Exogenous TGF-$\beta$ reduced NO secretion in IFN -γ stimulated murine macrophages. However addition of antisense oligodeoxynucleotide (ODN) to TGF-$\beta$ to this system recovered the ability of NO production and inhibited mRNA expression of TGF-$\beta$. ACAS interactive laser cytometry analysis showed that transportation of FITC -labeled antisense ODN complementary to TGF-$\beta$ mRNA could be observed within 5 min and reached maximal intensity in 30 min in the murine macrophage cells. NO released by activated macrophages inhibits superoxide formation in the same cells . This inhibition nay be related on NO-induced auto -adenosine diphosphate (ADP) -ribosylation . In addition, ADP-ribosylation may be involved in the process of macrophage activation .

  • PDF

Influence of Curcumin on HOTAIR-Mediated Migration of Human Renal Cell Carcinoma Cells

  • Pei, Chang-Song;Wu, Hong-Yan;Fan, Fan-Tian;Wu, Yi;Shen, Cun-Si;Pan, Li-Qun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.10
    • /
    • pp.4239-4243
    • /
    • 2014
  • Background: This study investigated the influence of curcumin on HOX transcript antisense RNA (HOTAIR)-mediated migration of cultured renal cell carcinoma (RCC) cells. Materials and Methods: Five RCC cell lines (769-P, 769-P-vector, 769-P-HOTAIR, 786-0, and Kert-3 ) were maintained in vitro. The expression of HOTAIR mRNA was determined by quantitative real-time PCR and cell migration was measured by transwell migration assay. The effects of different concentrations of curcumin (0 to $80{\mu}mol/L$) on cell proliferation was determined by the CCK-8 assay and influence of non-toxic levels (0 to $10{\mu}M$) on the migration of RCC cells was also determined. Results: Comparison of the 5 cell lines indicated a correlation between HOTAIR mRNA expression and cell migration. In particular, the migration of 769-P-HOTAIR cells was significantly higher than that of 769-P-vector cells. Curcumin at $2.5-10{\mu}M$ had no evident toxicity against RCC cells, but inhibited cell migration in a concentration-dependent manner. Conclusions: HOTAIR expression is correlated with the migration of RCC cells, and HOTAIR may be involved in the curcumin-induced inhibition of RCC metastasis.

Adenovirus-mediated Expression of Both Antisense Ornithine Decarboxylase and S-adenosylmethionine Decarboxylase Induces G1 Arrest in HT-29 Cells

  • Gong, Lei;Jiang, Chunying;Zhang, Bing;Hu, Haiyan;Wang, Wei;Liu, Xianxi
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.730-736
    • /
    • 2006
  • To evaluated the effect of recombinant adenovirus Ad-ODC-AdoMetDCas which can simultaneously express both antisense ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMetDC) on cell cycle distribution in colorectal cancer cell and investigated underlying regulatory responses, human colorectal cancer cells HT-29 were cultured in RPMI 1640 medium and infected with Ad-ODC-AdoMetDCas. Cell cycle progression was detected by flow cytometry analysis. The expression levels of cell cycle regulated proteins were measured by Western blot analysis. The mRNA level of cyclin D1 was measured by RT-PCR. And a luciferase reporter plasmid of cyclin D1 promoter was constructed to observe the effect of Ad-ODC-AdoMetDCas on cyclin D1 promoter activity. The results showed that recombinant adenovirus Ad-ODC-AdoMetDCas significantly induced $G_1$ arrest, decreased levels of cyclin D1 protein and mRNA and suppressed the promoter activity. Ad-ODC-AdoMetDCas also inhibited nuclear translocation of $\beta$-catenin. In conclusion, downregulation of ODC and AdoMetDC mediated by Ad-ODC-AdoMetDCas transfection induces $G_1$ arrest in HT-29 cells and the arrest was associated with suppression of cyclin D1 expression and inhibition of $\beta$-catenin nuclear translocation. As a new anticancer reagent, the recombinant adenovirus Ad-ODC-AdoMetDCas holds promising hope for the therapy of colorectal cancers.

Study on the Role of Estrogen Receptor-Alpha in Yak-Kong and Soybean Induced Proliferation of MG-63 Human Osteoblastie Cells (약콩 (Rhynchosia volubilis: 서목태) 및 대두 처리에 의한 MG-63 조골세포 증식 증가에서 ER$\alpha$의 역할에 대한 연구)

  • Um, So-Jung;Kang, In-Sook;Cho, Yun-Hi
    • Journal of Nutrition and Health
    • /
    • v.38 no.7
    • /
    • pp.512-520
    • /
    • 2005
  • Phytoestrogens, especially Yak-kong or soybean-derived isoflavones have been traditionally used as a supplement of estrogen for preventing postmenopausal osteoporosis in oriental folk medicine. In a previous study, we demonstrated that as Yak-kong and soybean increased MG-63 human osteoblastic cell proliferation, the expression of estrogen receptor $\alpha\;and\;beta\;(ER\;\alpha:\;ER\;\beta$) both were increased. However, the increased level of ER $\alpha$ is much higher than that of ER$\beta$. To determine whether the altered level of ER $\alpha$ expression affects Yak-kong or soybean induced MG-63 cell proliferation, we established cell lines stably expressing either ER $\alpha$ or antisense ER $\alpha$ RNAs. Increased expression of ER a in MG- 63 cells (ER $\alpha$-MG63) enhanced Yak-kong or soybean induced proliferation which paralleled with the enhanced expression of IGF-I. Inhibition of ER $\alpha$ expression by antisense $ER\;\alpha\;RNAs\;(As-ER\;\alpha-MG63$) caused these cells to insensitize Yak- kong or soybean induced proliferation and IGF-I expression. Furthermore, the comparable effects between Yak-kong and the combined treatment of genistein and daidzein at $0.5\;{\times}\;10^{-8}M$, which is a concentration of these two isoflavones similar to Yak-kong at 0.001 mg/ml, on cell proliferation and IGF-I expression in $ER\;\alpha-MG63\;or\;As-ER\;\alpha-MG63$ cells demonstrate that ER $\alpha$ plays an important, active role in MG-63 cell proliferation induced by phytoestrogens, especially Yak-kong or soybean derived isoflavones.

Expression of diligent protein and Pinoresinol/Lariciresinol reductase genes of forsythia in transgenic potatoes

  • Chuong, Tran-Van;Kim, Hyun-Soon;Park, Ji-Young;Joung, Jae-Youl;Youm, Jung-Won;Jeon, Jae-Heung
    • Plant Resources
    • /
    • v.4 no.3
    • /
    • pp.181-188
    • /
    • 2001
  • We tried to introduce two forsythia genes related in lignan biosynthesis, dirigent protein and pinoresinol/lariciresinol (Ph) reductase, into potatoes for accumulation of lignans in transgenic potatoes. We made binary vectors overexpressing dirigent protein gene and P/L reductase gene driven by a CaMV35S promoter and transformed into potatoes via Agrobacterium mediated transformation. And in order to control the metabolic flux of lignan biosynthesis pathway, we tried to inhibit chalcone synthase genes of potatoes by antisense inhibition technique also. We tried to use PCR screening method for selection of transgenic plants of different vectors. We tried to determine and compare lignan contents from different transgenic potato lines.

  • PDF

A prognosis discovering lethal-related genes in plants for target identification and inhibitor design (식물 치사관련 유전자를 이용하는 신규 제초제 작용점 탐색 및 조절물질 개발동향)

  • Hwang, I.T.;Lee, D.H.;Choi, J.S.;Kim, T.J.;Kim, B.T.;Park, Y.S.;Cho, K.Y.
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.3
    • /
    • pp.1-11
    • /
    • 2001
  • New technologies will have a large impact on the discovery of new herbicide site of action. Genomics, combinatorial chemistry, and bioinformatics help take advantage of serendipity through tile sequencing of huge numbers of genes or the synthesis of large numbers of chemical compounds. There are approximately $10^{30}\;to\;10^{50}$ possible molecules in molecular space of which only a fraction have been synthesized. Combining this potential with having access to 50,000 plant genes in the future elevates tile probability of discovering flew herbicidal site of actions. If 0.1, 1.0 or 10% of total genes in a typical plant are valid for herbicide target, a plant with 50,000 genes would provide about 50, 500, and 5,000 targets, respectively. However, only 11 herbicide targets have been identified and commercialized. The successful design of novel herbicides depends on careful consideration of a number of factors including target enzyme selections and validations, inhibitor designs, and the metabolic fates. Biochemical information can be used to identify enzymes which produce lethal phenotypes. The identification of a lethal target site is an important step to this approach. An examination of the characteristics of known targets provides of crucial insight as to the definition of a lethal target. Recently, antisense RNA suppression of an enzyme translation has been used to determine the genes required for toxicity and offers a strategy for identifying lethal target sites. After the identification of a lethal target, detailed knowledge such as the enzyme kinetics and the protein structure may be used to design potent inhibitors. Various types of inhibitors may be designed for a given enzyme. Strategies for the selection of new enzyme targets giving the desired physiological response upon partial inhibition include identification of chemical leads, lethal mutants and the use of antisense technology. Enzyme inhibitors having agrochemical utility can be categorized into six major groups: ground-state analogues, group specific reagents, affinity labels, suicide substrates, reaction intermediate analogues, and extraneous site inhibitors. In this review, examples of each category, and their advantages and disadvantages, will be discussed. The target identification and construction of a potent inhibitor, in itself, may not lead to develop an effective herbicide. The desired in vivo activity, uptake and translocation, and metabolism of the inhibitor should be studied in detail to assess the full potential of the target. Strategies for delivery of the compound to the target enzyme and avoidance of premature detoxification may include a proherbicidal approach, especially when inhibitors are highly charged or when selective detoxification or activation can be exploited. Utilization of differences in detoxification or activation between weeds and crops may lead to enhance selectivity. Without a full appreciation of each of these facets of herbicide design, the chances for success with the target or enzyme-driven approach are reduced.

  • PDF