• Title/Summary/Keyword: Antiproliferative activity

Search Result 208, Processing Time 0.035 seconds

A Novel Mannose-binding Tuber Lectin from Typhonium divaricatum (L.) Decne (family Araceae) with Antiviral Activity Against HSV-II and Anti-proliferative Effect on Human Cancer Cell Lines

  • Luo, Yongting;Xu, Xiaochao;Liu, Jiwei;Li, Jian;Sun, Yisheng;Liu, Zhen;Liu, Jinzhi;Damme, Els Van;Balzarini, Jan;Bao, Jinku
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.358-367
    • /
    • 2007
  • A novel mannose-binding tuber lectin with in vitro antiproliferative activity towards human cancer cell lines and antiviral activity against HSV-II was isolated from fresh tubers of a traditional Chinese medicinal herb, Typhonium divaricatum (L.) Decne by a combined procedure involving extraction, ammonium sulfate precipitation, ion exchange chromatography on DEAE-SEPHAROSE, CM-SEPHAROSE and gel-filtration on sephacryl S-200. The apparent molecular mass of the purified Typhonium divaricatum lectin (TDL) was 48 kDa. TDL exhibits hemagglutinating activity toward rabbit erythrocytes at 0.95 $\mu$g/ml, and its activity could be strongly inhibited by mannan, ovomucoid, asialofetuin and thyroglobulin. TDL showed antiproliferative activity towards some well established human cancer cell lines, e.g. Pro-01 (56.7 $\pm$ 6.8), Bre-04 (41.5 $\pm$ 4.8), and Lu-04 (11.4 $\pm$ 0.3). The anti-HSV-II activity of TDL was elucidated by testing its HSV-II infection inhibitory activity in Vero cells with $TC_50$ and $EC_50$ of 5.176 mg/ml and 3.054 $\mu$g/ml respectively. The full-length cDNA sequence of TDL was 1145 bp and contained an 813-bp open reading frame (ORF) encoding a 271 amino acid precursor of 29-kDa. Homology analysis showed that TDL had high homology with many other mannose-binding lectins. Secondary and three-dimensional structures analyses showed that TDL is heterotetramer and similar with lectins from mannose-binding lectin superfamily, especially those from family Araceae.

Antiproliferative Effects of Crocin in HepG2 Cells by Telomerase Inhibition and hTERT Down-Regulation

  • Noureini, Sakineh Kazemi;Wink, Michael
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2305-2309
    • /
    • 2012
  • Crocin, the main pigment of Crocus sativus L., has been shown to have antiproliferative effects on cancer cells, but the involved mechanisms are only poor understood. This study focused on probable effect of crocin on the immortality of hepatic cancer cells. Cytotoxicity of crocin ($IC_{50}$ 3 mg/ml) in hepatocarcinoma HepG2 cells was determined after 48 h by neutral red uptake assay and MTT test. Immortality was investigated through quantification of relative telomerase activity with a quantitative real-time PCR-based telomerase repeat amplification protocol (qTRAP). Telomerase activity in 0.5 ${\mu}g$ protein extract of HepG2 cells treated with 3 mg/ml crocin was reduced to about 51% as compared to untreated control cells. Two mechanisms of inhibition, i.e. interaction of crocin with telomeric quadruplex sequences and down regulation of hTERT expression, were examined using FRET analysis to measure melting temperature of a synthetic telomeric oligonucleotide in the presence of crocin and quantitative real-time RT-PCR, respectively. No significant changes were observed in the $T_m$ telomeric oligonucleotides, while the relative expression level of the catalytic subunit of telomerase (hTERT) gene showed a 60% decrease as compared to untreated control cells. In conclusion, telomerase activity of HepG2 cells decreases after treatment with crocin, which is probably caused by down-regulation of the expression of the catalytic subunit of the enzyme.

Antiproliferative Effect of Trichostatin A and HC-Toxin in T47D Human Breast Cancer Cells

  • Joung, Ki-Eun;Kim, Dae-Kee;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • v.27 no.6
    • /
    • pp.640-645
    • /
    • 2004
  • Histone deacetylase inhibitors are new class of chemotherapeutic drugs able to induce tumor cell apoptosis and/or cell cycle arrest. Trichostatin A, an antifungal antibiotic, and HC-toxin are potent and specific inhibitors of histone deacetylase activity. In this study, we have examined the antiproliferative activities of trichostatin A and HC-toxin in estrogen receptor positive human breast cancer, T47D cells. Both trichostatin A and HC-toxin showed potent antiprolifer-ative efficacy and cell cycle arrest at $G_2/M$ in T47D human breast cancer cells in a dose-dependent manner. Trichostatin A caused potent apoptosis of T47D human breast cancer cells and trichostatin A-induced apoptosis might be involved in an increase of caspase-3/7 activity. HC-toxin evoked apoptosis of T47D cells and HC-toxin induced apoptosis might not be medi-ated through direct increase in caspase-3/7 activity. We have identified potent activities of anti-proliferation, apoptosis, and cell cycle arrest of trichostatin A and HC-toxin in estrogen receptor positive human breast cancer cell line T47D.

Triptolide Inhibits the Proliferation of Immortalized HT22 Hippocampal Cells Via Persistent Activation of Extracellular Signal-Regulated Kinase-1/2 by Down-Regulating Mitogen-Activated Protein Kinase Phosphatase-1 Expression

  • Koo, Hee-Sang;Kang, Sung-Don;Lee, Ju-Hwan;Kim, Nam-Ho;Chung, Hun-Taeg;Pae, Hyun-Ock
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.4
    • /
    • pp.389-396
    • /
    • 2009
  • Objective : Triptolide (TP) has been reported to suppress the expression of mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1), of which main function is to inactivate the extracellular signal-regulated kinase-1/2 (ERK-1/2), the p38 MAPK and the c-Jun N-terminal kinase-1/2 (JNK-1/2), and to exert antiproliferative and pro-apoptotic activities. However, the mechanisms underlying antiproliferative and pro-apoptotic activities of TP are not fully understood. The purpose of this study was to examine whether the down-regulation of MKP-1 expression by TP would account for antiproliferative activity of TP in immortalized HT22 hippocampal cells. Methods : MKP-1 expression and MAPK phosphorylation were analyzed by Western blot. Cell proliferation was assessed by $^3H$-thymidine incorporation. Small interfering RNA (siRNA) against MKP-1, vanadate (a phosphatase inhibitor), U0126 (a specific inhibitor for ERK-1/2), SB203580 (a specific inhibitor for p38 MAPK), and SP600125 (a specific inhibitor for JNK-1/2) were employed to evaluate a possible mechanism of antiproliferative action of TP. Results : At its non-cytotoxic dose, TP suppressed MKP-1 expression, reduced cell growth, and induced persistent ERK-1/2 activation. Similar growth inhibition and ERK-1/2 activation were observed when MKP-1 expression was blocked by MKP-1 siRNA and its activity was inhibited by vanadate. The antiproliferative effects of TP, MKP-1 siRNA, and vanadate were significantly abolished by U0126, but not by SB203580 or SP600125. Conclusion : Our findings suggest that TP inhibits the growth of immortalized HT22 hippocampal cells via persistent ERK-1/2 activation by suppressing MKP-1 expression. Additionally, this study provides evidence supporting that MKP-1 may play an important role in regulation of neuronal cell growth.

Antioxidant and Antiproliferative Activity of Pepper (Capsicum annuum L.) Leaves (고추잎 추출물의 항산화 및 암세포 증식 억제 효과)

  • Jeon, Geon-Uk;Han, Ji-Young;Choi, Young-Min;Lee, Seon-Mi;Kim, Heung-Tae;Lee, Jun-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.8
    • /
    • pp.1079-1083
    • /
    • 2008
  • The purposes of this study were aimed to evaluate the antioxidant and antiproliferative activities of water, methanol, and 70% acetone extracts from pepper leaves. The antioxidant activity was evaluated by ABTS and DPPH radical scavenging activities, reducing power, and chelating effect. Moreover, the effects of the extracts on cell proliferation of breast (MCF7), colon (HCT116), and gastric (MKN45) tumor cells were investigated. Higher extraction yields were obtained with methanol than with 70% acetone and water. Among the three different solvents, 70% acetone extract showed the highest polyphenolic contents. 70% acetone extracts showed higher antioxidant activities compared with other extracts. Also, 70% acetone extract of pepper leaves exhibited higher antiproliferative activity (>80%) against HCT116 and MKN45 cells compared with other samples at the concentration of 1 mg/mL. These results indicate that pepper leaves may serve as potential dietary sources of natural antioxidants and antiproliferative substances.

Anti Tumoral Properties of Punica granatum (Pomegranate) Seed Extract in Different Human Cancer Cells

  • Seidi, Khaled;Jahanban-Esfahlan, Rana;Abasi, Mozhgan;Abbasi, Mehran Mesgari
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1119-1122
    • /
    • 2016
  • Background: Punica granatum (PG) has been demonstrated to possess antitumor effects on various types of cancer cells. In this study, we determined antiproliferative properties of a seed extract of PG (PSE) from Iran in different human cancer cells. Materials and Methods: A methanolic extract of pomegranate seeds was prepared. Total phenolic content (TPC) and total flavonoid content (TFC) were assessed by colorimetric assays. Antioxidant activity was determined with reference to DPPH radical scavenging activity. The cytotoxicity of different doses of PSE (0, 5, 20, 100, 250, 500, $1000{\mu}g/ml$) was evaluated by MTT assays with A549 (lung non small cell carcinoma), MCF-7 (breast adenocarcinoma), SKOV3 (ovarian cancer cells), and PC-3 (prostate adenocarcinoma) cells. Results: Significant (P<0.01) or very significant (P<0.0001) differences were observed in comparison to negative controls at all tested doses ($5-1000{\mu}g/ml$). In all studied cancer cells, PSE reduced the cell viability to values below 23%, even at the lowest doses. In all cases, IC50 was determined at doses below $5{\mu}g/ml$. In this regard, SKOV3 ovarian cancer cells were the most responsive to antiproliferative effects of PSE with a maximum mean growth inhibition of 86.8% vs. 82.8%, 81.4% and 80.0% in MCF-7, PC-3 and A549 cells, respectively. Conclusions: Low doses of PSE exert potent antiproliferative effects on different human cancer cells SKOV3 ovarian cancer cells as most and A549 cells ar least responsive regarding cytotoxic effects. However, the mechanisms of action need to be addressed.

The Influence of Alpha-fetoprotein on Natural Suppressor Cell Activity and Ehrlich Carcinoma Growth

  • Belyaev, Nikolai Nikolaevich;Bogdanov, Andrei-Yurievich;Savvulidi, PhiIipp-Gorgievich;Krasnoshtanov, Vladimir-Konstantinovich;Tleulieva, Raikhan-Tleulievna;Alipov, Gabit-Kaimovich;Sekine, Ichiro;Bae, Jun-Sang;Lee, Jeong-Beom;Min, Young-Ki;Yang, Hun-Mo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.4
    • /
    • pp.193-197
    • /
    • 2008
  • The influence of alpha-fetoprotein (AFP) on the bone marrow (BM) natural suppressor (NS) cells of intact Ehrlich carcinoma -bearing CBA mice was studied. Bone marrow NS cells were fractionated into three fractions by isopycnic centrifugation on percoll gradients: NS1 (${\rho}$=1.080 g/ml), NS2 (${\rho}$=1.090 g/ml) and NS3 (1.100> ${\rho}$ > 1.090 g/ml). These fractions were highly different in their sensitivity to known NS cell inductors (interleukin (IL)-2, IL-3 or histamine). None of the NS fractions isolated from the intact mice spontaneously produced antiproliferative activity, however, they showed a high level of NS (antiproliferative and natural killer cell inhibitory) activity under the influence of AFP. A single injection of AFP to intact mice led to an increase of spontaneous NS activity and the inhibition of natural killer cell activity. NS activity, especially NS2, was increased in when tumor cells were subcutaneously inoculated three days after AFP injection. In the AFP-treated mice, the tumor mass at 14 days was 60% larger than that in the untreated mice. Our data confirmed that AFP is a tumor marker that can inhibit cancer immunity and plays a role in cancer pathogenesis.

Synthesis and Preliminary Cytotoxicity Evaluation of New Diarylamides and Diarylureas Possessing 2,3-Dihydropyrrolo[3,2-b]quinoline Scaffold

  • Kim, Hyun-Jin;El-Gamal, Mohammed I.;Lee, Yong Sup;Oh, Chang-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2480-2486
    • /
    • 2013
  • A new series of diarylamides and diarylureas having 2,3-dihydropyrrolo[3,2-b]quinoline scaffold was synthesized. Their in vitro antiproliferative activities were tested over NCI-60 cancer cell lines of nine different cancer types. Some target compounds showed good inhibition percentages over different cell lines. Among all the target compounds, compound 1f possessing 6,7-dimethoxy-2,3-dihydropyrrolo[3,2-b]quinoline nucleus, amide linker, and 4-chloro-3-(trifluoromethyl)phenyl terminal ring showed high selectivity against MCF7 and MDA-MB-468 breast cancer cell lines more than the other tested cell lines. Its inhibition percentages at $10{\mu}M$ concentration over those two cell lines were 84.97% and 87.13%, respectively.

Preparation and Antitumor Activity of a Tamibarotene-Furoxan Derivative

  • Wang, Xue-Jian;Duan, Yu;Li, Zong-Tao;Feng, Jin-Hong;Pan, Xiang-Po;Zhang, Xiu-Rong;Shi, Li-Hong;Zhang, Tao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6343-6347
    • /
    • 2014
  • Multi-target drug design, in which drugs are designed as single molecules to simultaneously modulate multiple physiological targets, is an important strategy in the field of drug discovery. QT-011, a tamibarotene-furoxan derivative, was here prepared and proposed to exert synergistic effects on antileukemia by releasing nitric oxide and tamibarotene. Compared with tamibarotene itself, QT-011 displayed stronger antiproliferative effects on U937 and HL-60 cells and was more effective evaluated in a nude mice U937 xenograft model in vivo. In addition, QT-011 could release nitric oxide which might contribute to the antiproliferative activity. Autodocking assays showed that QT-011 fits well with the hydrophobic pocket of retinoic acid receptors. Taken together, these results suggest that QT-011 might be a highly effective derivative of tamibarotene and a potential candidate compound as antileukemia agent.