• Title/Summary/Keyword: Antioxidant peptide

Search Result 119, Processing Time 0.025 seconds

Enhancement of Skin Permeation of Pyrus serotina var Leaf Extract Using Polymer Micelle and Liposome Containing Cell Penetrating Peptide (세포투과 펩티드를 함유한 고분자 미셀 및 리포좀을 이용한 배나무 잎 추출물의 피부 흡수 증진)

  • An, Gyu Min;Park, Su In;Kim, Min Gi;Heo, Soo Hyeon;Shin, Moon Sam
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.685-699
    • /
    • 2019
  • Antioxidant, antibacterial, and skin penetration tests were conducted to investigate the skin absorption of Pyrus serotina var leaf extracts using polymer micelles and their applicability to cosmetic ingredients. Total polyphenol content was found to be $118.83{\pm}9.39mg/g$ in Pyrus serotina var leaf ethanol extract and $106.89{\pm}4.45mg/g$ in Pyrus serotina var leaf hydrothermal extract. The DPPH radical scavenging activity was found to be the highest radical scavenging activity of $74.39{\pm}7.48%$ of the Pyrus serotina var leaf ethanol extract at the concentration of 500 mg/L. The SOD-like activity was $91.62{\pm}0.43%$, the highest value at the concentration of 1,000 mg/L in the hydrothermal extract. After the experiment, antioxidation, wrinkle improvement and whitening activity were confirmed, and the Pyrus serotina var leaf extract was highly likely to be realized as antioxidant and antibacterial material. In the skin penetration experiment with the Pyrus serotina var leaf ethanol extract, the permeation amount of total accumulated tannic acid was found to be Formulation 2 ($55.45{\mu}g/cm^2$), Formulation 1 ($46.43{\mu}g/cm^2$), Formulation 0 ($34.36{\mu}g/cm^2$). In the liposome's skin penetration experiment containing pear leaf hydrothemal extract, the total amount of accumulated tannic acid permeation was found to be Formulation 5 ($75.01{\mu}g/cm^2$), Formulation 4 ($64.01{\mu}g/cm^2$) and Formulation 3 ($36.60{\mu}g/cm^2$). Through this study, we confirmed the possibility of antioxidant and wrinkle effects of Pyrus serotina var leaf extract. In addition, as a result of skin penetration through the production of polymer micelles and liposome containing Pyrus serotina var leaf extract, It will be more usable in cosmetic industry.

Resveratrol Inhibits Nitric Oxide-Induced Apoptosis via the NF-Kappa B Pathway in Rabbit Articular Chondrocytes

  • Eo, Seong-Hui;Cho, Hongsik;Kim, Song-Ja
    • Biomolecules & Therapeutics
    • /
    • v.21 no.5
    • /
    • pp.364-370
    • /
    • 2013
  • Resveratrol (trans-3,4'-trihydroxystillbene), a naturally occurring polyphenolic antioxidant found in grapes and red wine, elicits diverse biochemical responses and demonstrates anti-aging, anti-inflammatory, and anti-proliferative effects in several cell types. Previously, resveratrol was shown to regulate differentiation and inflammation in rabbit articular chondrocytes, while the direct production of nitric oxide (NO) in these cells by treatment with the NO donor sodium nitroprusside (SNP) led to apoptosis. In this study, the effect of resveratrol on NO-induced apoptosis in rabbit articular chondrocytes was investigated. Resveratrol dramatically reduced NO-induced apoptosis in chondrocytes, as determined by phase-contrast microscopy, the MTT assay, FACS analysis, and DAPI staining. Treatment with resveratrol inhibited the SNP-induced expression of p53 and p21 and reduced the expression of procaspase-3 in chondrocytes, as detected by western blot analysis. SNP-induced degradation of I-kappa B alpha ($I{\kappa}B-{\alpha}$) was rescued by resveratrol treatment, and the SN50 peptide-mediated inhibition of NF-kappa B (NF-${\kappa}B$) activity potently blocked SNP-induced caspase-3 activation and apoptosis. Our results suggest that resveratrol inhibits NO-induced apoptosis through the NF-${\kappa}B$ pathway in articular chondrocytes.

Metformin Inhibits Isoproterenol-induced Cardiac Hypertrophy in Mice

  • Cha, Hye-Na;Choi, Jung-Hyun;Kim, Yong-Woon;Kim, Jong-Yeon;Ahn, Myun-Whan;Park, So-Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.377-384
    • /
    • 2010
  • The present study examined whether metformin treatment prevents isoporterenol-induced cardiac hypertrophy in mice. Chronic subcutaneous infusion of isoproterenol (15 mg/kg/24 h) for 1 week using an osmotic minipump induced cardiac hypertrophy measured by the heart-to-body weight ratio and left ventricular posterior wall thickness. Cardiac hypertrophy was accompanied with increased interleukin-6 (IL-6), transforming growth factor (TGF)-${\beta}$, atrial natriuretic peptide (ANP), collagen I and III, and matrix metallopeptidase 2 (MMP-2). Coinfusion of metformin (150 mg/kg/24 h) with isoproterenol partially inhibited cardiac hypertrophy that was followed by reduced IL-6, TGF-${\beta}$, ANP, collagen I and III, and MMP-2. Chronic subcutaneous infusion of metformin did not increase AMP-activated protein kinase (AMPK) activity in heart, although acute intraperitoneal injection of metformin (10 mg/kg) increased AMPK activity. Isoproterenol increased nitrotyrosine levels and mRNA expression of antioxidant enzyme glutathione peroxidase and metformin treatment normalized these changes. These results suggest that metformin inhibits cardiac hypertrophy through attenuating oxidative stress.

Amelioration of Cognitive Dysfunction in APP/PS1 Double Transgenic Mice by Long-Term Treatment of 4-O-Methylhonokiol

  • Jung, Yu-Yeon;Lee, Young-Jung;Choi, Dong-Young;Hong, Jin Tae
    • Biomolecules & Therapeutics
    • /
    • v.22 no.3
    • /
    • pp.232-238
    • /
    • 2014
  • Alzheimer's disease (AD) is the most common neurodegenerative disease without known ways to cure. A key neuropathologic manifestation of the disease is extracellular deposition of beta-amyloid peptide (Ab). Specific mechanisms underlying the development of the disease have not yet been fully understood. In this study, we investigated effects of 4-O-methylhonokiol on memory dysfunction in APP/PS1 double transgenic mice. 4-O-methylhonokiol (1 mg/kg for 3 month) significantly reduced deficit in learning and memory of the transgenic mice, as determined by the Morris water maze test and step-through passive avoidance test. Our biochemical analysis suggested that 4-O-methylhonokiol ameliorated $A{\beta}$ accumulation in the cortex and hippocampus via reduction in beta-site APP-cleaving enzyme 1 expression. In addition, 4-O-methylhonokiol attenuated lipid peroxidation and elevated glutathione peroxidase activity in the double transgenic mice brains. Thus, suppressive effects of 4-O-methylhonokiol on $A{\beta}$ generation and oxidative stress in the brains of transgenic mice may be responsible for the enhancement in cognitive function. These results suggest that the natural compound has potential to intervene memory deficit and progressive neurodegeneration in AD patients.

Inhibitiory effect of green tea extract on $A\beta$-induced PC12 cell death

  • Lee, Sun-Young;Lee, Seung-Ho;Son, Dong-Ju;Kim, Su-Jin;Ha, Tae-Youl;Yun, Yeo-Pyo;Oh, Ki-Wan;Hong, Jin-Tae
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.82.2-83
    • /
    • 2003
  • Beta-amyloid peptide (A${\beta}$) is considered to be responsible for the pathogenesis of the Alzheimer's disease. Several lines of evidence support that A${\beta}$-amyloid-induced cytotoxicity is mediated through the generation of reactive oxygen species (ROS). Agents that are able to scavenge excess ROS may be useful as protecting or reducing agents for development or progress of AD. Green tea extract has been known to have antioxidant property. Our previous studies also demonstrate that green tea extract protected ischemia/reperfusion-induced brain injury by reduction of cell death through scavenging of oxidative damages of macromolecules. (omitted)

  • PDF

Bioactive peptides-derived from marine by-products: development, health benefits and potential application in biomedicine

  • Pratama, Idham Sumarto;Putra, Yanuariska;Pangestuti, Ratih;Kim, Se-Kwon;Siahaan, Evi Amelia
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.7
    • /
    • pp.357-379
    • /
    • 2022
  • Increased fisheries products have raised by-products that are discarded due to low economic value. In addition, marine by-products are still rich in protein and nutritional value that have biological activities and give benefits to human health. Meanwhile, there is raised pressure for sustainability practices in marine industries to reduce waste and minimize the detrimental effect on the environment. Thus, valorization by-products through bioactive peptide mining are crucial. This review focus on various ways to obtain bioactive peptides from marine by-products through protein hydrolysis, for instance chemical hydrolysis (acid and based), biochemical hydrolysis (autolysis and enzymatic hydrolysis), microbial fermentation, and subcritical water hydrolysis. Nevertheless, these processes have benefits and drawbacks which need to be considered. This review also addresses various biological activities that are favorable in pharmaceutical industries, including antioxidant, antihypertensive, anticancer, anti-obesity, and other beneficial bioactivities. In addition, some potential marine resources of Indonesia for the marine biopeptide from their by-product or undesired marine commodities would be addressed as well.

Skin Permeability of Petroselinum Crispum Extract Using Polymer Micelles and Epidermal Penetration Peptide (고분자 미셀과 경피투과 펩티드를 이용한 파슬리 추출물의 피부흡수 효과)

  • An, Gyu Min;Park, Su In;Kim, Min Gi;Heo, Soo Hyeon;Shin, Moon Sam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.3
    • /
    • pp.265-275
    • /
    • 2019
  • This study was conducted to investigate physiological activity and its skin permeability of Petroselinum crispum extract using polymer micelles and cell penetrating peptide. In the antioxidant test, the total concentrations of polyphenol compounds were determined to be $121.68{\pm}2.49mg/g$ (for ethanol extract and), $72.42{\pm}1.52mg/g$ (for hydrothermal extract.). The DPPH radical scavenging ability was $90.48{\pm}0.46%$ (for ethanol extract) and $83.92{\pm}0.13%$ (for hydrothermal extract) at 2000 mg/L. ABTS radical scavenging ability was $91.08{\pm}0.14%$ for ethanol extract ethanol extract, which is higher than that of hydrothermal extract at 800 mg/L ($69.63{\pm}0.55%$). In the SOD experiments, the P. crispum ethanol extract showed higher SOD activity than that of the P. crispum hydrothermal extract at all concentrations.. At a concentration of 16,000 mg/L, P. crispum ethanol extract showed the highest SOD activity of $128.45{\pm}0.70%$. The elastase inhibitory assay also showed concentration dependence and elastase inhibition of P. crispum ethanol extract was $99.99{\pm}1.54%$, which was the highest at 2,000 mg/L. To solve the problem of insolubility and to improve skin permeability of the extract, PCL-PEG polymer micelle containing P. crispum ethanol extracts and 1% cell permeable peptide, hexa-D-arginine (R6) were successfully prepared with a particle size of 40.10 nm. In the results of 24 hours of skin permeation experiment, total accumulated beta-carotene amounts showed $37.99{\mu}g/cm^2$ in Petroselinum crispum extracts and $68.38{\mu}g/cm^2$ (1.8 times) in P. crispum extract of the particles.

Physiological Activity of Supercritical Poria cocos back Extract and Its Skin Delivery Application using Epidermal Penetrating Peptide (초임계 복령피 추출물의 생리활성 및 경피투과 펩티드를 이용한 경피 약물전달의 응용)

  • Kim, Min Gi;Park, Su In;An, Gyu Min;Heo, Soo Hyeon;Shin, Moon Sam
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.766-778
    • /
    • 2019
  • In this study, Poria cocos bark were extracted by supercritical process, and anti-inflammatory, whitening, and antioxidant effects were measured in comparison with ethanol extract. Also, An effective percutaneous permeation method using a selected formulation of the extract and a drug delivery peptide was proposed. Pachymic acid, known as the anti-cancer and anti-inflammatory compound of the ventricle, is an indicator component and the HPLC analysis shows that the supercritical extract of the pericardium is more than twice that of the Poria cocos bark extract. In order to confirm antioxidative effect of Bombyx mori, DPPH scavenging ability and ABTS scavenging ability test showed that the ethanol extract of Poria cocos Back had lower concentration than the supercritical extract of Poria cocos back. However, RAW 264.7 Measurements of Nitric oxide (NO) production in cells showed lower NO production at the same concentration than the Poria cocos back ethanol extract. In addition, after 72 hours of processing of $20{\mu}g/mL$ of the Poria cocos back extract in B16 melanoma cells, both the intracellular and extracellular melanin extract were effective and the supercritical extract was lower melanin content. No toxicity was observed at the concentration of $800{\mu}g/mL$ in RAW 264.7 cells used in NO production experiments. However, in B16 melanoma cells, even at $50{\mu}g/mL$, both Poria cocos back ethanol extract and supercritical extract showed a survival rate of less than 60%. The liposome formulation and drug delivery peptides were shown to be useful for percutaneous permeation of Supercritical Extract of Poria cocos back using a liposome formulation and a drug delivery peptide. it is expected that there will be great potential for development as a variety of cosmetic materials for Poria cocos back.

Flavonoid production and antioxidant activity effect by lactic acid bacteria fermentation of deer antler extract (녹용추출물의 유산균 발효에 의한 플라보노이드 생성과 항산화활성 효과)

  • Kim, Hyun-Kyoung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.399-408
    • /
    • 2022
  • As part of research on the development of functional materials for antlers, lactic acid fermentation of antler extract was performed. It was intended to develop a functional material with enhanced total polyphenol and flavonoid content and enhanced antioxidant activity. During the fermentation of lactic acid bacteria, the number of proliferation, total polyphenol and total flavonoid content, DPPH radical scavenging and antioxidant activity were quantified and evaluated. As a result of adding these four types of lactic acid bacteria to the antler water extract substrate, the number of lactic acid bacteria measured was 2.04~5.00×107. Meanwhile, a protease (Baciullus amyloliquefaciens culture: Maxazyme NNP DS) was added to the antler extract to decompose the peptide bonds of the contained proteins. Then, these four types of lactic acid bacteria were added and the number of lactic acid bacteria increased to 2.84×107~2.21×108 as the result of culture. The total polyphenol contents were 4.82~6.26g/mL in the lactic acid bacteria fermentation extracts, and after the reaction of protease enzyme and lactic fermentation, increased to 14.27~20.58 g/mL. The total flavonoid contents were 1.52~2.21 g/ml in the lactic acid bacteria fermentation extracts, and after the protease reaction and fermentation, increased to 5.59~8.11 mg/mL. DPPH radical scavenging activities of lactic acid bacteria fermentation extracts was 17.03~22.75%, but after the protease reaction and fermentation, remarkably increased to 32.82~42.90%.

Biological Characteristics of Protein Hydrolysates Derived from Yoensan Ogae Meat by Various Commercial Proteases (프로테아제 종류에 따른 이용한 연산 오계육 단백질 가수분해물의 아미노산 및 생리활성 특성)

  • Ha, Yoo Jin;Kim, Joo Shin;Yoo, Sun Kyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.1018-1027
    • /
    • 2019
  • Natural-derived protein-derived low molecular weight peptides have been known to have physiological activities such as antioxidant, hypertension relief, immunomodulation, pain relief and antimicrobial activity. In this study, the low-molecular peptides were produced using commercial proteases (alcalase, bromelain, flavourzyme, neutrase, papain, protamex), and the antioxidant activity (DPPH scavenging activity, superoxide radical scavenging activity, hydroxy radical scavenging activity, and metals chelation capacity), constituent amino acid and molecular weight of the peptide were analyzed. Enzyme reaction was performed by adding 50 g of chopped Ogae meat slurry and 2%(w/v) protein enzyme into the enzyme reactor for 2 h at a pH of 6 and a temperature of $60^{\circ}C$. The degree of hydrolysis(%) after the reaction ranged from $36.65{\pm}4.10%$ to $70.75{\pm}5.29%$. The highest degree of hydrolysis of protamex was 46.3%, and the highest value of papain hydrolysate was $70.75{\pm}5.29%$. On the other hand, alcalase hydrolysate showed the lowest value of $36.65{\pm}4.10%$. Bromelain-treated low molecular weight peptides showed the highest DPPH radical scavenging activity and the lowest scavenging activity of alcalase-treated peptides. Superoxide radical scavenging activity showed that bromelain treated low molecular peptide showed the highest radical scavenging activity of 50% or more. Hydroxyl radical scavenging activity ranged from about 16.73 to 69.16%, the highest among bromelain-treated low molecular peptides. $Fe^{2+}$ chelation abilities showed a distribution between about 17.85 to 47.84%. The chelation capacity of the hydrolysates was not significantly different without any difference to the enzymes used. The results of amino acid analysis showed differences between hydrolysates of alcalase, bromelain, flavourzyme, neutrase, papain, and protamex enzymes. The most amino acid was glutamic acid. The molecular weight distribution of the enzyme hydrolyzates was in the range of 300-2,000 Da, although the molecular weight distribution differed according to the treated enzymes.