• Title/Summary/Keyword: Antimicrobial fiber

Search Result 104, Processing Time 0.02 seconds

Development of Functional Textile Material by Using Chitosan 1. Preparation and Characterization of Chitosan Fiber and Chitosan Fiber Coated with S-carboxymethyl Keratein (키토산을 이용한 기능성 소재 개발 1. 키토산 섬유와 S-카르복시메틸케라틴 코팅 키토산 섬유의 제조와 특성)

  • 민경혜;신윤숙
    • Textile Coloration and Finishing
    • /
    • v.11 no.3
    • /
    • pp.32-40
    • /
    • 1999
  • Chitosan fiber was prepared by wet spinning with various draw ratio. Chitosan fiber was coated with f-carboxymethyl keratein(SCMK) by extruding chitosan solution into 1 M NaOH solution containing 1% SCMK. Among three chitosan used in this study(chitosans of 5 cps, 50 cps, 100 cps), 50 cps chitosan gave the best tenacity and optimum concentration was 5%. SCMK coating increased the tenacity of chitosan fiber. Regardless of SCMK coating, tenacity and elongation of both chitosan fibers were increased with the increase of draw ratio. Chitosan fiber showed antimicrobial activity against Staphyloccus aureus showing 66∼72% of bacteria reduction rates. On the other hand, chitosan fiber coated with SCMK didn't show any antimicrobial activity.

  • PDF

Dyeing of Cotton with Rosemary Extract (로즈마리 추출물틀 이용한 면의 염색)

  • 신윤숙;오유정
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.3_4
    • /
    • pp.485-491
    • /
    • 2002
  • Dyeing properties of rosemary colorants on cotton fabrics were investigated. Effect of dyeing conditions on dye uptake and effect of mordanting and cationizing on dye uptake, color change and colorfastness were explored. Also, antimicrobial activity of rosemary colorants was ascertained and further effect of cationizing on antimicrobial activity was investigated. Affinity of rosemary colorants to cotton fiber was considerably low, and its isotherm adsorption curve was Freundlich type, indicating that hydrogen bonding was involved in the adsorption of rosemary colorants to cotton fiber. The cotton fabrics showed generally high colorfastness except fastness to washing and light. The cationized cotton with Cationon UK(quarterly ammonium salt) showed higher dye uptake and shorter dyeing time, compared with the untreated cotton. The cationized cotton showed good colorfastness to washing, perspiration and rubbing. Antimicrobial activity of rosemary colorfastness was confirmed. The cationized cotton itself showed high bacterial reduction rate. For cationized and dyed samples, as dye uptake increased, bacterial reduction rate was decreased slightly.

Surface Characteristics, Antimicrobial and Photodegradation Effect of Cotton Fibers Coated with TiO2 Nanoparticles and 3-Mercaptopropyltrimethoxysilane(3-MPTMS) (TiO2 나노입자와 3-MPTMS로 코팅 처리한 면섬유의 표면 특성과 항균성 및 광분해효과)

  • Park, Sujin;Lee, Jaewoong;Kim, Sam Soo;Lee, Sang Oh
    • Textile Coloration and Finishing
    • /
    • v.30 no.4
    • /
    • pp.245-255
    • /
    • 2018
  • In this study, cotton fabrics were coated with $TiO_2$ nanoparticles using 3-mercaptopropyltrimethoxysilane(3-MPTMS), which is highly reactive to cotton fabrics, as a medium, and the characteristics, antimicrobial properties, and photodegradation properties of the fibers were measured. The manufacturing process is as follows. (1) 3-MPTMS was added to isopropanol, and $TiO_2$ colloid was added to the mixture to prepare a solution. (2) Cellulose fibers were immersed in the prepared $3-MPTMS/TiO_2$ solution, stirred for 90 minutes at $45^{\circ}C$ in a constant temperature water bath, and dried thereafter. In order to identify the morphology of the cellulose fibers coated with $TiO_2$ nanoparticles, the surface was observed with a scanning electron microscope(SEM), and SEM-EDS was measured to identify the adhesion of $TiO_2$ nanoparticles. The SEM images showed $TiO_2$ nanoparticle and 3-MPTMS coated layers on the fibers and it was identified that $TiO_2$ nanoparticles were attached to the cellulose fibers. The antimicrobial activity of $3-MPTMS/TiO_2$-treated cotton fabrics was measured using a bacterial reduction method. $3-MPTMS/TiO_2$ cellulose fibers which was irradiated by ultra violet light, showed antimicrobial activity against Escherichia coli(ATCC 43895) and Staphylococcus aureus(ATCCBAA-1707) unlike unirradiated fibers. The cellulose fibers were stained with methylene blue and the photodegradation performance of the stained fabrics was analyzed. The stained fabrics showed high degradation performance with photolytic reactions of $TiO_2$ nanoparticles.

A Study on the Pharmacetical and Chemical Characteristics of Natural Artemisia Extract (천연 쑥 추출물의 약리 및 화학적 특성 연구)

  • Sung, Ki-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.51-59
    • /
    • 2009
  • Natural Artemisia extraction was extracted from Artemisia component using diethyl ether as a solvent, and we tested various pharmacetical and chemical characteristics of this extract. Characteristic experiments to use natural Artemisia extract tested antimicrobial experiment using microbe in pharmacetical material, and tested dye experiment using fiber in chemical material. From the result of characteristics experiment, some conclusions are obtained as follow. From the result of extraction experiment, it obtained about 10.4%-Artemisia extraction ratio as semi-solid state, and after dried in freezing from Artemisia extract of semi-solid state, it obtained about 10%-Artemisia extraction ratio as solid state of dark blue-green color. From result of antimicrobial experiment of Artemisia extract, number of staphylococcus aureus (ATCC-01) and aspergillus niger (ATCC-02) in microbe decreased more and more according to time passage. This phenomenon showed that Artemisia extract influences to antimicrobial effect. From the result of dye experiment of Artemisia extract, it appeared in direction of dark blue-green color after dyed to use cotton and silk with fiber to control in pH 7.5. Specially the result which confirmed dye of fiber with optical electron microscope (OEM), we could know that it appears darker silk than cotton.

A Study on the Pharmaceutical and Chemical Characteristics of Natural Grape Extract (천연 포도 추출물의 약리 및 화학적 특성 연구)

  • Sung, Ki-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.341-349
    • /
    • 2009
  • Natural grape extraction was extracted from grape component using diethyl ether as a solvent, and we tested various pharmaceutical and chemical characteristics of this extract. Characteristic experiments to use natural grape extract tested antimicrobial experiment using microbe in pharmaceutical material, and tested dye experiment using fiber in chemical material. From the result of characteristics experiment, some conclusions are obtained as follow. From the result of characteristics experiment, it obtained about 7.5%-grape extraction ratio as semi-solid state, and after dried in freezing from grape extract of semi-solid state, it obtained about 10%-grape extraction ratio as solid state of dark purple color. From result of antimicrobial experiment of grape extract, number of staphylococcus aureus (KCMC-01) and aspergillus niger (KCMC-02) in microbe decreased more and more according to time passage. This phenomenon showed that grape extract influences to antimicrobial effect. From the result of dye experiment of grape extract, it appeared in direction of dark purple color after dyed to use cotton and silk with fiber to control in pH 7.5. Specially the result which confirmed dye of fiber with optical electron microscope(OEM), we could know that it appears darker silk than cotton.

Antimicrobial and Water Repellency Effect of Functional PET Fibers with ODDMAC(octadecyldimethyl(3-triethoxy silylpropyl) ammonium chloride) (ODDMAC를 이용한 항균성 및 발수성 동시 발현이 가능한 기능성 PET 섬유)

  • Yang, Heejin;Jeon, Hyeji;Lee, Sang Oh;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.32 no.4
    • /
    • pp.265-273
    • /
    • 2020
  • In this study, octadecyldimethyl(3-triethoxy silylpropyl)ammonium chloride (ODDMAC) incorporated with Polyethylene terephthalate (PET) fabrics with different environmental conditions such as various temperature and time intervals. First, ODDMAC (15 weight %) was dissolved in ethanol. Then PET fabrics immersed in the ODDMAC solution at 25 ℃ for 10 minutes and dried at 80 ℃ for 5 minutes. The dried PET/PDDMAC fabrics carried out for curing process out at 110 ℃ ~ 190 ℃. The treated PET/ODDMAC has examined the surface and side coating properties through SEM analysis and elemental analysis. PET/ODDMAC fabric washed with water up to 50 times and studied the durability of the materials. It was confirmed that the treated PET fabric also exhibited good water repellency. In addition, the antimicrobial activity against the gram-positive bacteria Staphylococcus aureus and gram-negative bacteria Escherichia coli were studied by the disc diffusion method on the treated fabric.

Dyeability and Functionality of Pine Needles Extract (Part II) -Dyeing Properties of Protein Fiber- (솔잎 추출물의 염색성과 기능성 (제2보) -단백질섬유에 대한 염색성-)

  • Woo, Hyo-Jung;Lee, Jung-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.4
    • /
    • pp.466-475
    • /
    • 2011
  • The dyeing properties of protein fiber with pine needles colorants were studied through an investigation of the effect of dyeing conditions such as dye concentration, dyeing temperatures and time on dye uptakes, effect of mordants, and color change. In addition, the various colorfastness of dyed silk and wool fabrics were evaluated for practical use. The antimicrobial ability, ultraviolet-cut ability, and deodorant ability were also estimated. The dye uptake increased as the dyeing concentration increased and this enabled the obtainment of the Langmuir absorption isotherm. The dye uptake increased as the dyeing time and temperature increased. Pine needles colorants showed relatively good affinity to protein fiber and produced a yellow color. Post-mordanting was more effective than the pre-mordanting, and the dye uptake of fabrics improved by mordanting. Except for washing, the colorfastness of dyed fabrics showed a low rating. However, the colorfastness to light and the dry cleaning of fabrics mordanted with N.Cu, and the friction fastness of fabrics mordanted with Cu improved. The guide fabrics showed very good antimicrobial abilities of 99.9%; in addition, the ultraviolet-cut ability and deodorant ability improved in fabrics dyed with pine needles extracts.

Dyeability and Functionality of Catechu(Part II) -Dyeing Properties of Protein Fiber with Catechu- (아선약의 염색성과 기능성(제2보) -단백질섬유에 대한 염색성-)

  • Nam, Ki-Yeon;Lee, Jung-Soon
    • Korean Journal of Human Ecology
    • /
    • v.19 no.4
    • /
    • pp.709-717
    • /
    • 2010
  • This study investigated the properties and functions of wool and silk dyed with Catechu by examining the effects of dying conditions such as dye concentration, dying temperature, dyeing time, pH level and pre-mordants. These conditions were examined in relation to dye uptake and color changes, washing fastness, light fastness, ultraviolet-cut ability and antimicrobial ability of the dyed fabrics. Catechu showed good affinity to silk fiber. Langmuir adsorption isotherm was obtained, and so it was considered that ionic bondings are formed between Catechu and protein fiber. As the dyeing time and temperature is increased, the dyeability of both silk and wool fabrics also increases. At high temperatures the color of dyed fabrics changes from Y and YR to R. Wool is effective in using Al, Cu, Fe mordant, while silk is effective only in using only Cu mordants. The dyeability was shown to be improved at low pH levels. Additionally, both washing fastness and light fastness were shown to be low. However, the fabric color gradually changed to red was due to mailard reaction of catechol tannin causingby repeated washing and sunlight. The ultraviolet-cut ability was improved for cotton fabric dyed with Catechu. Also, dyed fabric with Catechu showed very good antimicrobial abilities at 99.9%.

Antimicrobial Agents and Applications on Polymeric Materials (고분자재료에 대한 항균성 물질과 적용)

  • Lee, Jae-Woong
    • Textile Coloration and Finishing
    • /
    • v.20 no.3
    • /
    • pp.39-56
    • /
    • 2008
  • A wide variety of materials including aldehydes, cationic agents, alcohols, peroxygens, phenols and chlorinated phenols, metal ions are being employed as biocides. Among three levels for biocidal functions (sanitization, disinfection and sterilization), disinfection is an enough level for antimicrobial textiles. In terms of antimicrobial agents for textile applications, quaternary ammonium salts (QAS), chitosan, metal and metal salts, N-halamine based materials are developed with numerous research and the positive ions of those materials may result in disinfection of microorganisms. Photocatalysts, especially titanium dioxide (titania) produces the hydroxyl radical (${\cdot}\;OH$) which causes inactivation of microorganisms after UV radiation, have been used for antimicrobial applications.