• Title/Summary/Keyword: Antimalarial

Search Result 71, Processing Time 0.026 seconds

Studies on the Constituents of the Spirea Plants (I) -Sterols from the Root of Spiraea prunifolia var. simpliciflora- (조팝나무속(屬) 식물(植物)의 성분연구(成分硏究) (I) -조팝나무 뿌리의 Sterol에 대하여-)

  • Ro, Jai-Seup
    • Korean Journal of Pharmacognosy
    • /
    • v.13 no.1
    • /
    • pp.39-42
    • /
    • 1982
  • Spiraea prunifolia Sieb. et. Zucc. var. simpliciflora Nakai (Rosaceae) is distributed in Korea, and used as a folk medicine for antipyretic, antimalarial and emetic. Sterols were obtained from the methanolic extract of the root of above plant. The composition of sterols are campesterol and ${\beta}-sitosterol$ which has been determined by gaschromatographic analysis.

  • PDF

Binding modes of artemisinin to malarial TCTP demonstrated by computer modeling

  • Chai, Jin-Sun;Kim, Choon-Mi
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.315.2-315.2
    • /
    • 2002
  • The translationally controlled tumor-associated proteins (TCTPs) are a highly conserved and abundantly expressed family of eukaryotic proteins that are implicated in both cell growth and human acute allergic response but whose intracellular biochemical function has remained elusive. There are reports that antimalarial drug, artemisinin. binds to Plasmodium falciparum TCTP. however, its 3D structure has not been known. (omitted)

  • PDF

General Pharmacology of Artesunate, a Commonly used Antimalarial Drug: Effects on Central Nervous, Cardiovascular, and Respiratory System

  • Lee, Hyang-Ae;Kim, Ki-Suk;Kim, Eun-Joo
    • Toxicological Research
    • /
    • v.26 no.3
    • /
    • pp.223-232
    • /
    • 2010
  • Artesunate, a semi-synthetic derivative of artemisinin, is used primarily as a treatment for malaria. Its effects on the central nervous system, general behavior, and cardiovascular, respiratory, and other organ systems were studied using mice, rats, guinea pigs, and dogs. Artesunate was administered orally to mice at doses of 125, 250, and 500 mg/kg and to rats and guinea pigs at 100, 200, and 400 mg/kg. In dogs, test drugs were administered orally in gelatin capsules at doses of 50, 100, and 150 mg/kg. Artesunate induced insignificant changes in general pharmacological studies, including general behavior, motor coordination, body temperature, analgesia, convulsion modulation, blood pressure, heart rate (HR), and electrocardiogram (ECG) in dogs in vivo; respiration in guinea pigs; and gut motility or direct effects on isolated guinea pig ileum, contractile responses, and renal function. On the other hand, artesunate decreased the HR and coronary flow rate (CFR) in the rat in vitro; however, the extent of the changes was small and they were not confirmed in in vivo studies in the dog. Artesunate increased hexobarbital-induced sleeping time in a dose-related manner. Artesunate induced dose-related decreases in the volume of gastric secretions and the total acidity of gastric contents, and induced increases in pH at a dose of 400 mg/kg. However, all of these changes were observed at doses much greater than clinical therapeutic doses (2.4 mg/kg in humans, when used as an anti-malarial). Thus, it can be concluded that artesunate is safe at clinical therapeutic doses.

Management of malaria in Thailand

  • Silachamroon, Udomsak;Krudsood, Srivicha;Phophak, Nanthaphorn;Looareesuwan, Sornchai
    • Parasites, Hosts and Diseases
    • /
    • v.40 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • The purpose of treatment for uncomplicated malaria is to produce a radical cute using the combination of: artesunate (4 mg/kg/day) plus mefloquine (8 mg/kg/day) for 3 days; a fixed dose of artemether and lumefantrine (20/120 mg tablet) named $Coartem^{\circledR}$ (4 tablets twice a day for three days for adults weighing more than 35 kg); quinine 10 mg/kg 8-hourly plus tetracycline 250 mg 6-hourly for 7 days (or doxycycline 200 mg as an alternative to tetracycline once a day for 7 days) in patients aged 8 years and over; $Malarone^{\circledR}$ (in adult 4 tablets daily for 3 days). In treating severe malaria, early diagnosis and treatment with a potent antimalarial drug is recommended to save the patient's life. The antimalarial drugs of choice are: intravenous quinine or a parenteral form of an artemisinin derivative (artesunate i.v./i.m. for 2.4 mg/kg followed by 1.2 mg/kg injection at 12 and 24 hr and then daily for 5 days; artemether i.m. 3.2 mg/kg injection followed by 1.6 mg/kg at 12 and 24 hrs and then dialy for 5 days; arteether i. m. ($Artemotil^{\circledR}$) with the same dose of artemether or artesunate suppository (5 mg/kg) given rectally 12 hourly for 3 days. Oral arlemisinin derivatives (artesunate, artemether, and dihydroartemisinin with 4 mg/kg/day) could replace parenteral forms when patients can tolerate oral medication. Oral mefloquine (25 mg/kg divided into two doses 8 hrs apart) should be given at the end of the artemisinin treatment course to reduce recrudescence.

Homology Modeling and Molecular Docking Study of Translationally Controlled Tumor Protein and Artemisinin

  • Chae, Jin-Sun;Choi, In-Hee;Kim, Choon-Mi
    • Archives of Pharmacal Research
    • /
    • v.29 no.1
    • /
    • pp.50-58
    • /
    • 2006
  • Translationally controlled tumor protein (TCTP), also known as histamine releasing factor (HRF), is found abundantly in different eukaryotic cell types. The sequence homology of TCTP between different species is very high, belonging to the MSS4/DSS4 superfamily of proteins. TCTP is involved in both cell growth and human late allergy reaction, as well as having a calcium binding property; however, its primary biological functions remain to be clearly elucidated. In regard to many possible functions, the TCTP of Plasmodium falciparum (Pf) is known to bind with an antimalarial agent, artemisinin, which is activated by heme. It is assumed that the endoperoxide-bridge of artemisinin is opened up by heme to form a free radical, which then eventually alkylates, probably to the Cys14 of PfTCTP. Study of the docking of artemisinin with heme, and subsequently with PfTCTP, was carried out to verify the above hypothesis on the basis of structural interactions. The three dimensional (3D) structure of PfTCTP was built by homology modeling, using the NMR structure of the TCTP of Schizosaccharomyces pombe as a template. The quality of the model was examined based on its secondary structure and biological function, as well as with the use of structure evaluating programs. The interactions between artemisinin, heme and PfTCTP were then studied using the docking program, FlexiDock. The center of the peroxide bond of artemisinin and the Fe of heme were docked within a short distance of $2.6{\AA}$, implying the strong possibility of an interaction between the two molecules, as proposed. When the activated form of artemisinin was docked on the PfTCTP, the C4-radical of the drug faced towards the sulfur of Cys14 within a distance of $2.48{\AA}$, again suggesting the possibility of alkylation having occurred. These results confirm the proposed mechanism of the antimalarial effect of artemisinin, which will provide a reliable method for establishing the mechanism of its biological activity using a molecular modeling study.

Multi-Function of a New Bioactive Secondary Metabolite Derived from Endophytic Fungus Colletotrichum acutatum of Angelica sinensis

  • Ramy S. Yehia
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.806-822
    • /
    • 2023
  • In the current study we assessed a new crystallized compound, 5-(1-hydroxybutyl)-4-methoxy-3-methyl-2H-pyran-2-one (C-HMMP), from the endophytic fungus Colletotrichum acutatum residing in the medicinal plant Angelica sinensis for its in vitro antimicrobial, antibiofilm, antioxidant, antimalarial, and anti-proliferative properties. The promising compound was identified as C-HMMP through antimicrobial-guided fraction. The structure of C-HMMP was unambiguously confirmed by 2D NMR and HIRS spectroscopic analysis. Antimicrobial property testing of C-HMMP showed it to be effective against a variety of pathogenic bacteria and fungi with MICs ranging from 3.9 to 31.25 ㎍/ml. The compound displayed excellent antibiofilm activity against C. albicans, S. aureus, and K. pneumonia. Furthermore, the antimalarial and radical scavenging activities of C-HMMP were clearly dosedependent, with IC50 values of 0.15 and 131.2 ㎍/ml. The anti-proliferative activity of C-HMMP against the HepG-2, HeLa, and MCF-7 cell lines in vitro was investigated by MTT assay, revealing notable anti-proliferative activity with IC50 values of 114.1, 90, and 133.6 ㎍/ml, respectively. Moreover, CHMMP successfully targets topoisomerase I and demonstrated beneficial anti-mutagenicity in the Ames test against the reactive carcinogenic mutagen, 2-aminofluorene (2-AF). Finally, the compound inhibited the activity of α-glucosidase and α-amylase with IC50 values of 144.7 and 118.6 ㎍/ml, respectively. To the best of our knowledge, the identified compound C-HMMP was obtained for the first time from C. acutatum of A. sinensis, and this study demonstrated that C-HMMP has relevant biological significance and could provide better therapeutic targets against disease.

Comparative antiplasmodial activity, cytotoxicity, and phytochemical contents of Warburgia ugandensis stem bark against Aspilia africana wild and in vitro regenerated tissues

  • Denis Okello;Jeremiah Gathirwa;Alice Wanyoko;Richard Komakech;Yuseong Chung;Roggers Gang;Francis Omujal;Youngmin Kang
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.97-107
    • /
    • 2023
  • Malaria remains to be one of the most severe global public health concerns. Traditionally, Aspilia Africana and Warburgia ugandensis have been used to treat malaria in several African countries for millennia. In the current study, A. africana calli (AaC), A. africana in vitro roots (AaIR), A. africana wild leaf (AaWL), and W. ugandensis stem bark (WuSB) were dried and pulverized. Fourier transform near-infrared spectroscopy was used to analyze the powdered samples, while 80% ethanolic extracts of each sample were assayed for antiplasmodial activity (against Plasmodium falciparum strains DD2 (chloroquine-resistant) and 3D7 (chloroquine-sensitive)) and cytotoxicity. WuSB showed the highest antiplasmodial activity (IC50 = 1.57 ± 0.210 ㎍/ml and 8.92 ± 0.365 ㎍/ml against P. falciparum 3D7 and DD2, respectively) and selectivity indices (43.90 ± 7.914 and 7.543 ± 0.051 for P. falciparum 3D7 and DD2, respectively). The highest total polyphenolic contents (total phenolic and flavonoid contents of 367.9 ± 3.55 mg GAE/g and 203.9 ± 1.43 mg RUE/g, respectively) were recorded for WuSB and the lowest were recorded for AaC. The antiplasmodial activities of the tested plant tissues correlated positively with total polyphenolic content. The high selectivity indices of WuSB justify its traditional applications in treating malaria and present it as a good candidate for discovering new antimalarial compounds. We recommend elicitation treatment for AaIR, which showed moderate antiplasmodial activity against P. falciparum DD2, to increase its secondary metabolite production for optimal antimalarial activity.

Travelers' malaria among foreigners at the Hospital for Tropical Diseases, Bangkok, Thailand - a 6-year review (2000-2005)

  • Piyaphanee Watcharapong;Krudsood Srivicha;Silachamroon Udomsak;Pornpininworakij Karnchana;Danwiwatdecha Phatcharee;Chamnachanan Supat;Wilairatana Polrat;Looareesuwan Sornchai
    • Parasites, Hosts and Diseases
    • /
    • v.44 no.3
    • /
    • pp.229-232
    • /
    • 2006
  • We retrospectively examined the charts of travelers admitted to the Hospital for Tropical Diseases, Bangkok, Thailand, with malaria during the years 2000-2005. Twenty-one cases of malaria were identified, of which 12 (57%) were Plasmodium vivax infections and 9 (43%) were P. falciparum infections. There was one mixed case with vivax and falciparum infection. Only 1 P. falciparum case had complications. All cases were successfully treated with standard antimalarial drugs. Only 3 of the 21 cases were thought to be acquired in Thailand, the rest were regarded to be imported.

Cytotoxic C-Benzylated Chalcone and Other Constituents of Ellipeiopsis cherrevensis

  • Wirasathien, Lalita;Pengsuparp, Thitima;Moriyasu, Masataka;Kawanishi, Kazuko;Suttisri, Rutt
    • Archives of Pharmacal Research
    • /
    • v.29 no.6
    • /
    • pp.497-502
    • /
    • 2006
  • A new natural C-benzylated chalcone, $2',4'-dihydroxy-3'-(2-hydroxybenzyl)-6{\c}-methoxychalcone$ (2), along with two other flavonoids, tiliroside and kaempferol 3-O-rutinoside, and an oxoaporphine alkaloid, lanuginosine were isolated from the aerial parts of Ellipeiopsis cherrevensis (Annonaceae). Two known polyoxygenated cyclohexene derivatives, ferrudiol and zeylenol, and a new analog, ellipeiopsol D, were also isolated. The chalcone 2 exhibited cytotoxic activity against human small-cell lung-cancer (NCl-H187), epidermoid carcinoma (KB) and breast cancer (BC) cell lines with $IC_{50}$ values of 1.40, 5.31 and $13.92\;{\mu}g/mL$, respectively. This compound also showed antimalarial activity against Plasmodium falciparum with an $IC_{50}$ value of $7.1\;{\mu}g/mL$ as well as antimicrobacterial activity against Mycobacterium tuberculosis with a MIC of 25 mg/mL.