• Title/Summary/Keyword: Antifungal-active lactic acid bacteria

Search Result 4, Processing Time 0.018 seconds

Antifungal Activity of Lactic Acid Bacteria Isolated from Kimchi Against Aspergillus fumigatus

  • Kim, Jeong-Dong
    • Mycobiology
    • /
    • v.33 no.4
    • /
    • pp.210-214
    • /
    • 2005
  • More than 120 isolates of lactic acid bacteria obtained from Kimchi was screened for antifungal activity against Aspergillus fumigatus. Approximately 10% of the isolates showed inhibitory activity and only 4.16% (five isolates) exhibited strong activity against the indicator fungus A. fumigatus. The five isolates showed a wide rang of antifungal activity against A. flavus, Fusarium moniliforme, Penicillium commune, and Rhizopus oryzae. They were identified by 16S rDNA sequencing as Lactobacillus cruvatus, L. lactis subsp. lactis, L. casei, L. pentosus, and L. sakei. The effect of Lactobacillus on mycelial growth and fungal biomass as well as its ability to produce toxic compounds were determined. The results indicate that the three species, Lactobacillus casei, L. lactis subsp. lactis, and L. pentosus, are active against A. fumigatus.

Quality and storage characteristics of yogurt containing Lacobacillus sakei ALI033 and cinnamon ethanol extract

  • Choi, Yu Jin;Jin, Hee Yeon;Yang, Hee Sun;Lee, Sang Cheon;Huh, Chang Ki
    • Journal of Animal Science and Technology
    • /
    • v.58 no.4
    • /
    • pp.16.1-16.7
    • /
    • 2016
  • Background: This study was conducted to examine the quality and storage characteristics of yogurt containing antifungal-active lactic acid bacteria (ALH, Lacobacillus sakei ALI033) isolated from kimchi and cinnamon ethanol extract. The starter was used for culture inoculation (1.0 % commercial starter culture YF-L812 and ALH). Results: The antifungal activity of cinnamon extracts was observed in treatments with either cinnamon ethanol extracts or cinnamon methanol extracts. Changes in fermented milk made with ALH and cinnamon extract during fermentation at $40^{\circ}C$ were as follows. The pH was 4.6 after only 6 h of fermentation. Titratable acidity values were maintained at 0.8 % in all treatment groups. Viable cell counts were maintained at $4{\times}10^9CFU/mL$ in all groups except for 1.00 % cinnamon treatment. Sensory evaluations of fermented milk sample made with ALH and 0.05 % cinnamon ethanol extract were the highest. Changes in fermented milk made with ALH and cinnamon ethanol extract during storage at $4^{\circ}C$ for 28 days were as follows. In fermented milk containing ALH and cinnamon ethanol extracts, the changes in pH and titratable acidity were moderate and smaller compared with those of the control. Viable cell counts were maintained within a proper range of $10^8CFU/mL$. Conclusions: The results of this study suggest that the overgrowth of fermentation strains or post acidification during storage can be effectively delayed, thereby maintaining the storage quality of yogurt products in a stable way, using cinnamon ethanol extract, which exhibits excellent antifungal and antibacterial activity, in combination with lactic acid bacteria isolated from kimchi.

Isolation of Antifungal Lactic Acid Bacteria (LAB) from "Kunu" against Toxigenic Aspergillus flavus

  • Olonisakin, Oluwafunmilayo Oluwakemi;Jeff-Agboola, Yemisi Adefunke;Ogidi, Clement Olusola;Akinyele, Bamidele Juliet
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.2
    • /
    • pp.138-143
    • /
    • 2017
  • The antifungal activity of isolated lactic acid bacteria (LAB) from a locally fermented cereal, "Kunu", was tested against toxigenic Aspergillus flavus. The liquid refreshment, "Kunu", was prepared under hygienic condition using millet, sorghum, and the combination of the two grains. The antifungal potential of isolated LAB against toxigenic A. flavus was carried out using both in vitro and in vivo antifungal assays. The LAB count from prepared "Kunu" ranged from $2.80{\times}10^4CFU/mL$ to $4.10{\times}10^4CFU/mL$ and Lactobacillus plantarum, Lactobacillus delbrueckii, Lactobacillus fermentum, Pediococcus acidilactici, and Leuconostoc mesenteroides were the isolated bacteria. Inhibitory zones exhibited by LAB against toxigenic A. flavus ranged from 5.0 mm to 20.0 mm. The albino mice infected with toxigenic A. flavus showed sluggishness, decrease in body weight, distortion of hair, and presence of blood in their stool, while those treated with LAB after infection were recovered and active like those in control groups. Except for the white blood cell that was increased in the infected mice as $6.73mm^3$, the packed cell volume, hemoglobin, and red blood cell in infected animals were significantly reduced (P<0.05) to 29.28%, 10.06%, and 4.28%, respectively, when compared to the treated mice with LAB and control groups. The antifungal activity of LAB against toxigenic A. flavus can be attributed to the antimicrobial metabolites. These metabolites can be extracted and used as biopreservatives in food products to substitute the use of chemical preservatives that is not appealing to consumers due to several side effects.

Antifungal Activity of Lactobacillus plantarum Isolated from Kimchi (김치로부터 항진균 활성 Lactobacillus plantarum의 분리 및 특성 규명)

  • Yang, Eun-Ju;Chang, Hae-Choon
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.276-284
    • /
    • 2008
  • A lactic acid bacterium having antifungal activity was isolated from kimchi. It was identified as Lactobacillus plantarum based on its morphological and biochemical properties, and 16S rRNA sequence, and designated as Lb. plantarum AF1. This isolate inhibited the growth of Aspergillus flavus ATCC 22546, A. fumigatus ATCC 96918, A. petrakii PF-1, A. ochraceus PF-2, A. nidulans PF-3, Epicoccum nigrum KF-1, and Cladosporium gossypiicola KF-2 under a dual culture overlay assay. Also, the antimicrobial activity was found to be active against various species of Gram-positive and Gram-negative bacteria. The antifungal activity was found to be stable after heat ($121^{\circ}C$, 15 min) and proteolytic enzyme treatment, but it was unstable over pH 5.0. The antifungal compound(s) was estimated to have a low molecular mass (below 3,000 Da).