• Title/Summary/Keyword: Antifungal potential

Search Result 254, Processing Time 0.029 seconds

Unraveling the Role of Cytochrome P450 as a Key Regulator Lantipeptide Production in Streptomyces globisporus

  • Da-Ran Kim;Su In Lee;Youn-Sig Kwak
    • The Plant Pathology Journal
    • /
    • v.39 no.6
    • /
    • pp.566-574
    • /
    • 2023
  • The aim of this study was to investigate the regulation of lantipeptide production in Streptomyces globisporus SP6C4, which produces the novel antifungal lantipeptides conprimycin and grisin, and to identify the role of cytochrome P450 (P450) in tis regulation. To investigate the regulation of lantipeptide production, we created gene deletion mutants, including ΔP450, ΔtsrD, ΔlanM, ΔP450ΔtsrD, and ΔP450ΔlanM. These mutants were characterized in terms of their morphology, sporulation, attachment, and antifungal activity against Fusarium oxysporum. The gene deletion mutants showed distinct characteristics compared to the wild-type strain. Among them, the ΔP450ΔlanM double mutant exhibited a recovery of antifungal activity against F. oxysporum, indicating that P450 plays a significant role in regulating lantipeptide production in S. globisporus SP6C4. Our findings highlight the significant role of P450 in the regulation of lantipeptide production and morphological processes in S. globisporus. The results suggest a potential link between P450-mediated metabolic pathways and the regulation of growth and secondary metabolism in SP6C4, thereby highlighting P450 as a putative target for the development of new antifungal agents.

Screening for Antifungal Endophytic Fungi Against Six Plant Pathogenic Fungi

  • Park, Joong-Hyeop;Park, Ji-Hyun;Choi, Gyung-Ja;Lee, Seon-Woo;Jang, Kyoung-Soo;Choi, Yong-Ho;Cho, Kwang-Yun;Kim, Jin-Cheol
    • Mycobiology
    • /
    • v.31 no.3
    • /
    • pp.179-182
    • /
    • 2003
  • A total of 187 endophytic fungi were isolated from 11 plant species, which were collected from 11 locations in Korea. Their antifungal activities were screened in vivo by antifungal bioassays after they were cultured in potato dextrose broth and rice solid media. Antifungal activity against plant pathogenic fungi such as Magnaporthe grisea(rice blast), Corticium sasaki(rice sheath blight), Botrytis cinerea(tomato gray mold), Phytophthora infestans(tomato late blight), Puccinia recondita(wheat leaf rust), and Blumeria graminis f. sp. hordei(barley powdery mildew) was determined in vivo by observing the inhibition of plant disease development. Twenty(11.7%) endophytic fungi fermentation broths were able to control, by more than 90%, at least one of the six plant diseases tested. Among 187 liquid broths, the F0010 strain isolated from Abies holophylla had the most potent disease control activity; it showed control values of more than 90% against five plant diseases, except for tomato late blight. On the other hand, fourteen(7.5%) solid culture extracts exhibited potent disease control values of more than 90% against one of six plant diseases. The screening results of this study strongly suggested that metabolites of plant endophytic fungi could be good potential sources for screening programs of bioactive natural products.

Isolation of Bacillus velezensis SSH100-10 with Antifungal Activity from Korean Traditional Soysauce and Characterization of Its Antifungal Compounds (전통재래 간장으로부터 항진균 활성 B. velezensis SSH100-10의 분리와 그 항진균 물질의 특성 구명)

  • Chang, Mi;Moon, Song Hee;Chang, Hae Choon
    • Food Science and Preservation
    • /
    • v.19 no.5
    • /
    • pp.757-766
    • /
    • 2012
  • The SSH100-10 bacterial strain, which exhibits strong antifungal (anti-mold and anti-yeast) activity, was isolated from traditional korean soysauce aged 100 years. The strain was identified as Bacillus velezensis based on Gram-staining, the biochemical properties and 16S rRNA gene sequence determination. B. velezensis SSH100-10 showed strong proteinase activity and NaCl tolerance, but did not produce enterotoxin. Two-antifungal compounds from B. velezensis SSH100-10 were purified using SPE, preparative HPLC, and reverse phase-HPLC. The purified antifungal compounds were identified as $C_{14}$ and $C_{15}$ iturin through MALDI-TOF-MS and amino acid composition analysis. The stability characteristics of the antifungal compounds after temperature, pH, and enzyme treatments suggested that B. velezensis SSH100-10 produced more than two antifungal compounds; pH-stable $C_{14}$ iturin A and $C_{15}$ iturin A, and unidentified pH-unstable compounds. The results suggested that B. velezensis SSH100-10 can be used in soybean fermentation as a starter. Moreover it has potential as a biopreservative in the food and feed industry and as a biocontrol agent in the field of agriculture.

Isolation and Characterization of Bacillus Strain as a Potential Biocontrol Agent (환경친화적 미생물농약으로서의 잠재성을 가진 세균의 분리 및 특성)

  • Lee, Ye-Ram;Lee, Sang-Mee;Jang, Eun-Young;Hong, Chang-Oh;Kim, Keun-Ki;Park, Hyean-Cheal;g Lee, Sang-Mon;Kim, Young-Gyun;Son, Hong-Joo
    • Journal of Life Science
    • /
    • v.25 no.12
    • /
    • pp.1408-1414
    • /
    • 2015
  • In this study, to retain a stable bacterial inoculant, Bacillus strains showing antifungal activity were screened. The improved production, antifungal mechanism, and stability of the antifungal metabolite by a selected strain, AF4, a potent antagonist against phytopathogenic Botrytis cinerea, were also investigated. The AF4 strain was isolated from rhizospheric soil of hot pepper and identified as Bacillus subtilis by phenotypic characters and 16S rRNA gene analysis. Strain AF4 did not produce antifungal activity in the absence of a nitrogen source and produced antifungal activity at a broad range of temperatures (25-40℃) and pH (7-10). Optimal carbon and nitrogen sources for the production of antifungal activity were glycerol and casein, respectively. Under improved conditions, the maximum antifungal activity was 140±3 AU/ml, which was higher than in the basal medium. Photomicrographs of strain AF4-treated B. cinerea showed morphological abnormalities of fungal mycelia, demonstrating the role of the antifungal metabolite. The B. subtilis AF4 culture exhibited broad antifungal activity against several phytopathogenic fungi. The antifungal activity was heat-, pH-, solvent-, and protease-stable, indicating its nonproteinous nature. These results suggest that B. subtilis AF4 is a potential candidate for the control of phytopathogenic fungi-derived plant diseases.

Isolation of Antifungal Lactic Acid Bacteria (LAB) from "Kunu" against Toxigenic Aspergillus flavus

  • Olonisakin, Oluwafunmilayo Oluwakemi;Jeff-Agboola, Yemisi Adefunke;Ogidi, Clement Olusola;Akinyele, Bamidele Juliet
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.2
    • /
    • pp.138-143
    • /
    • 2017
  • The antifungal activity of isolated lactic acid bacteria (LAB) from a locally fermented cereal, "Kunu", was tested against toxigenic Aspergillus flavus. The liquid refreshment, "Kunu", was prepared under hygienic condition using millet, sorghum, and the combination of the two grains. The antifungal potential of isolated LAB against toxigenic A. flavus was carried out using both in vitro and in vivo antifungal assays. The LAB count from prepared "Kunu" ranged from $2.80{\times}10^4CFU/mL$ to $4.10{\times}10^4CFU/mL$ and Lactobacillus plantarum, Lactobacillus delbrueckii, Lactobacillus fermentum, Pediococcus acidilactici, and Leuconostoc mesenteroides were the isolated bacteria. Inhibitory zones exhibited by LAB against toxigenic A. flavus ranged from 5.0 mm to 20.0 mm. The albino mice infected with toxigenic A. flavus showed sluggishness, decrease in body weight, distortion of hair, and presence of blood in their stool, while those treated with LAB after infection were recovered and active like those in control groups. Except for the white blood cell that was increased in the infected mice as $6.73mm^3$, the packed cell volume, hemoglobin, and red blood cell in infected animals were significantly reduced (P<0.05) to 29.28%, 10.06%, and 4.28%, respectively, when compared to the treated mice with LAB and control groups. The antifungal activity of LAB against toxigenic A. flavus can be attributed to the antimicrobial metabolites. These metabolites can be extracted and used as biopreservatives in food products to substitute the use of chemical preservatives that is not appealing to consumers due to several side effects.

Inhibitory Effects of Seaweed Extracts on Growth of Malassezia furfur and Malassezia restricta

  • Choi, Jae-Suk;Lee, Bo-Bae;Joo, Chi-Un;Shin, Su-Hwa;Ha, Yu-Mi;Bae, Hee-Jung;Choi, In-Soon
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.1
    • /
    • pp.29-34
    • /
    • 2009
  • Fifty seven species of common seaweed from the coast of Korea were screened for antifungal activity against Malassezia species. Seaweeds as a source of bioactive compounds are able to produce a great variety of secondary metabolites with different activities. There are numerous reports on the biological activities of seaweeds against human pathogens, fungi, and yeasts, but only few contain data regarding inhibitory effects against Malassezia sp., a major cause of dandruff and seborrheic dermatitis. To help address this paucity of information, this work was carried out to examine the antifungal effects of seaweed extracts against M. furfur and M. restricta. Of the fifty seven species of marine algae screened for their potential antifungal activity, only 17 species (29.8%) exhibited inhibitory activity. In agar disc diffusion method, the ether extracts of Corallina pilulifera, Enteromorpha linza, Laminaria japonica, Symphyocladia latiuscula and Ulva sp. showed strong antifungal activity. To identify major constituents in seaweed extracts, four selected extracts were analyzed on' a GC-MS equipped with a flame ionization detector, and compared to spectral data from databases WILEY229.LIB and NIST107.LIB. Most constituents in seaweed extracts are fatty acid-related compounds. When we evaluated any acute toxicity, the ether extracts of the selected four species were not toxic in mice. According to these results, it can be suggested that these seaweed extracts are valuable for the development of therapeutic agents in treating dandruff and seborrheic dermatitis. Further investigations to determine its bioactive compound(s) are currently in progress.

Antifungal Activity of Lagenaria breviflora Fruit Extracts Against Wood Rotting Fungi on Vitex doniana Wood

  • Adedeji, Gabriel Adetoye;Eguakun, Funmilayo Sarah;Elufloye, Taiwo Olayemi;Uriel, Tamunobubeleye
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.4
    • /
    • pp.322-329
    • /
    • 2017
  • As a result of contemporary environmental concerns, a number of studies from plants' tissues as one of the alternatives to conventional chemicals are increasingly investigated. In tandem with these trends, Lagenaria breviflora (LB) fruit, reputed as antiviral and depilatory agents in the Yoruba folkloric medicine was examined on Vitex doniana wood to ascertain its antifungal activity. Fungicides of 25%, 50%, 75%, and 100% LB fruits formulations (concentrations) were developed through simple one-step mechanical-forming process, including control. In this study, the yield, the chemical compositions, the absorption capacity of the fungicides and wood weight losses (WWL) analysis were evaluated to investigate the antifungal activity of LB fruit on wood. The fruit extract yielded 35.4% of fresh juice weight. LB fruits contained total: alkaloids ($8.78{\pm}0.21mg/mL$), flavonoids ($2.01{\pm}0.02mg/mL$), phenol ($7.42{\pm}0.09mg/mL$), saponins ($11.00{\pm}0.10mg/mL$) and tannins ($5.47{\pm}0.05mg/mL$) contents. All the formulations provided effective protection against the tested wood fungi compared to control. Interestingly, the antifungal activity of 50% and 25% formulations of 6.8% WWL and 9.9% WWL satisfied the excellent fungal resistance class description against white rot fungus (Ganoderma lucidum) and brown rot fungus (Fibroporia vaillantii), respectively according to ASTM D 2017. These results thus, support LB fruit as a strong potential source of natural antifungals for industrial wood production.

Biocontrol Activity of Volatile-Producing Bacillus megaterium and Pseudomonas protegens Against Aspergillus and Penicillium spp. Predominant in Stored Rice Grains: Study II

  • Mannaa, Mohamed;Kim, Ki Deok
    • Mycobiology
    • /
    • v.46 no.1
    • /
    • pp.52-63
    • /
    • 2018
  • In our previous studies, Bacillus megaterium KU143, Microbacterium testaceum KU313, and Pseudomonas protegens AS15 have been shown to be antagonistic to Aspergillus flavus in stored rice grains. In this study, the biocontrol activities of these strains were evaluated against Aspergillus candidus, Aspergillus fumigatus, Penicillium fellutanum, and Penicillium islandicum, which are predominant in stored rice grains. In vitro and in vivo antifungal activities of the bacterial strains were evaluated against the fungi on media and rice grains, respectively. The antifungal activities of the volatiles produced by the strains against fungal development and population were also tested using I-plates. In in vitro tests, the strains produced secondary metabolites capable of reducing conidial germination, germ-tube elongation, and mycelial growth of all the tested fungi. In in vivo tests, the strains significantly inhibited the fungal growth in rice grains. Additionally, in I-plate tests, strains KU143 and AS15 produced volatiles that significantly inhibited not only mycelial growth, sporulation, and conidial germination of the fungi on media but also fungal populations on rice grains. GC-MS analysis of the volatiles by strains KU143 and AS15 identified 12 and 17 compounds, respectively. Among these, the antifungal compound, 5-methyl-2-phenyl-1H-indole, was produced by strain KU143 and the antimicrobial compounds, 2-butyl 1-octanal, dimethyl disulfide, 2-isopropyl-5-methyl-1-heptanol, and 4-trifluoroacetoxyhexadecane, were produced by strain AS15. These results suggest that the tested strains producing extracellular metabolites and/or volatiles may have a broad spectrum of antifungal activities against the grain fungi. In particular, B. megaterium KU143 and P. protegens AS15 may be potential biocontrol agents against Aspergillus and Penicillium spp. during rice grain storage.

Antifungal Activities of the Essential Oils in Syzygium aromaticum (L.) Merr. Et Perry and Leptospermum petersonii Bailey and their Constituents against Various Dermatophytes

  • Park, Mi-Jin;Gwak, Ki-Seob;Yang, In;Choi, Won-Sil;Jo, Hyun-Jin;Chang, Je-Won;Jeung, Eui-Bae;Choi, In-Gyu
    • Journal of Microbiology
    • /
    • v.45 no.5
    • /
    • pp.460-465
    • /
    • 2007
  • This study was carried out in order to investigate the potential of using plant oils derived from Leptospermum petersonii Bailey and Syzygium aromaticum L. Merr. Et Perry as natural antifungal agents. The antifungal effects of essential oils at concentrations of 0.05, 0.1, 0.15, and 0.2 mg/ml on the dermatophytes Microsporum canis (KCTC 6591), Trichophyton mentagrophytes (KCTC 6077), Trichophyton rubrum (KCCM 60443), Epidermophyton floccosum (KCCM 11667), and Microsporum gypseum were evaluated using the agar diffusion method. The major constituents of the active fraction against the dermatophytes were identified by gas chromatography-mass spectrometry and high-performance liquid chromatography analysis. The antifungal activities of S. aromaticum oil (clove oil) against the dermatophytes tested were highest at a concentration of 0.2mg/ml, with an effectiveness of more than 60%. Hyphal growth was completely inhibited in T. mentagrophytes, T. rubrum, and M. gypseum by treatment with clove oil at a concentration of 0.2 mg/ml. Eugenol was the most effective antifungal constituent of clove oil against the dermatophytes T. mentagrophytes and M. canis. Morphological changes in the hyphae of T. mentagrophytes, such as damage to the cell wall and cell membrane and the expansion of the endoplasmic reticulum, after treatment with 0.11 mg/ml eugenol were observed by transmission electron microscopy (TEM). At a concentration of 0.2 mg/ml, L. petersonii oil (LPO) was more than 90% effective against all of the dermatophytes tested, with the exception of T. rubrum. Geranial was determined to be the most active antifungal constituent of L. petersonii oil. Taken together, the results of this study demonstrate that clove and tea tree oils exhibited significant antifungal activities against the dermatophytes tested in this study.

Evaluation on Anti-fungal Activity and Synergy Effects of Essential Oil and Their Constituents from Abies holophylla (전나무 정유의 항진균 효과와 유효성분의 시너지효과 평가)

  • Kim, Seon-Hong;Lee, Su-Yeon;Cho, Seong-Min;Hong, Chang-Young;Park, Mi-Jin;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.113-123
    • /
    • 2016
  • This study was to investigate the antifungal activity of A. holophylla essential oil against dermatophytes, such as Epidermophyton floccosum, Trichophyton mentagrophytes and Trichophyton rubrum, and to determine the potential effective compound as dermatitis treatment. To evaluate the potential antifungal activities of A. holophylla essential oil and its fractions, paper disc diffusion and agar dilution method tested with morphological observation. Also, their major constituents were analyzed by GC/MS. To determine synergic effects of active ingredient from A. holophylla essential oil were carried out by checkerboard microtiter plate testing. The morphological changes of the dermatophytes exposed to active fraction G4 were observed by electron microscopes. As the results, the highest activities were identified in the fraction containing ${\alpha}$-bisabolol. A mixture of ${\alpha}$-bisabolol and bornyl acetate showed the synergy effects, expressing high potential effects. Also, morphological observation using electron microscopes showed a dramatic changes of cell membrane of E. floccosum and T. rubrum exposed to fraction G4 containing ${\alpha}$-bisabolol. In conclusion, A. holophylla essential oil and its constituents were expected to be used as antifungal agent or raw material for dermatitis therapy.