• Title/Summary/Keyword: Antifungal potential

검색결과 254건 처리시간 0.027초

Chitosan이 사과 겹무늬썩음병균 Botryosphaeria dothidea의 생육에 미치는 영향

  • 이승지;엄재열;이용현
    • 한국미생물·생명공학회지
    • /
    • 제24권3호
    • /
    • pp.261-267
    • /
    • 1996
  • To examine the potential utilization of chitosan, the biodegradable natural polymer, as a control agent of apple white rot caused by Botryosphaeria dothidea in a new control measure by coating it on the diseased branches, the various antifungal activities of chitosan was investigated. Chitosan showed significant inhibitory effect on the mycelial growth of B. dothidea, along with the morphological changes including hyphal swelling and ultrastructural changes on solid PDA medium. In liquid PD broth medium, the chitosan showed more significant effect on the growth of B. dothidea also forming cell clusters indicating affection on the hyphal extension. The growth of B. dothidea was inhibited more than 90% at the concentration of 1.0 mg/ml. Chitosan also detained the spore germination and induced the morphological change of germ tubes. Glucosamine, monomer of chitosan, did not affect on the growth of B. dothidea indicating the antifungal activity was caused by chitosan polymer.

  • PDF

식물병원성 곰팡이에 대한 몇 가지 식물정유 및 주성분의 성장억제 효과 (Antifungal Activity of Some Essential Oils and Their Major Constituents on 3 Plant Pathogenic Fungi)

  • 조현지;신동일
    • 생명과학회지
    • /
    • 제14권6호
    • /
    • pp.1003-1008
    • /
    • 2004
  • 11 plant essential oils are screened in vitro for their antifungal activities against Botrytis cinerea, Fusarium oxysporum and Rhizoctonia solani, which are causative agents of serious plant diseases. The radial growth of the test fungi were reduced in response to the oils. Among them, the essential oil from the bark of Cinnamomum zeylanicum inhibited 3 tested fungi growth, strongly, followed by those of oregano and thyme. The major constituents of the three essential oils, cinnaldehyde, carvacrol and thymol were tested for their effects on the fungi. From the results obtained, cinnamaldehyde, the major constituents of C. zeylanicum bark esential oil, has potential to be developed as a biopesticide for controlling phytopathogenic fungi causing serious damages on the important crops cultivated in Korea.

Biocontrol of Tomato Fusarium Wilt by a Novel Genotype of 2,4-Diacetylphloroglucinol-producing Pseudomonas sp. NJ134

  • Kang, Beom-Ryong
    • The Plant Pathology Journal
    • /
    • 제28권1호
    • /
    • pp.93-100
    • /
    • 2012
  • The rhizobacterium NJ134, showing strong $in$ $vitro$ antifungal activity against $Fusarium$ $oxysporum$, was isolated from field grown tomato plants and identified as $Pseudomonas$ sp. based on 16S ribosomal DNA sequence and biochemical analyses. The antifungal compound purified by gas chromatography-mass spectrometry, infrared, and nuclear magnetic resonance analyses from NJ134 cultures was polyketide 2,4-diacetylphloroglucinol (DAPG). Analysis of the sequence of part of one of the genes associated with DAPG synthesis, $phlD$, indicated that the DAPG producer NJ134 was a novel genotype or variant of existing genotype termed O that have been categorized based on isolates from Europe and North America. A greenhouse study indicated that about $10^8$ CFU/g of soil NJ134 culture application was required for effective biocontrol of Fusarium wilt in tomato. These results suggest that a new variant genotype of a DAPG-producing strain of $Pseudomonas$ has the potential to control Fusarium wilt under the low disease pressure conditions.

Inhibitory Effect of Algal Extracts on Mycelial Growth of the Tomato-Wilt Pathogen, Fusarium oxysporum f. sp. lycopersici

  • Kim, Ji-Young;Kim, Jeong-Dong
    • Mycobiology
    • /
    • 제36권4호
    • /
    • pp.242-248
    • /
    • 2008
  • The present study was undertaken to explore the inhibitory effect of cyanobacterial extracts of Nostoc commune FA-103 against the tomato-wilt pathogen, Fusarium oxysporum f. sp. lycopersici. In an optimal medium, cell growth, antifungal activity, and antifungal compound production could be increased 2.7-fold, 4.1-fold, and 13.4-fold, respectively. A crude algal extract had a similar effect as mancozeb at the recommended dose, both in laboratory and pot tests. In vitro and in vivo fungal growth, spore sporulation and fungal infection of wilt pathogen in tomato seeds were significantly inhibited by cyanobacterial extracts. Nostoc commune FA-103 extracts have potential for the suppression of Fusarium oxysporum f. sp. lycopersici.

Antifungal Activity of Streptomyces sp. Against Puccinia recondita Causing Wheat Leaf Rust

  • Yi, Yong-Sub;Kim, Seung-Hyun;Kim, Min-Woo;Choi, Gyung-Ja;Cho, Kwang-Yun;Song, Jae-Kyeong;Lim, Yoong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권2호
    • /
    • pp.422-425
    • /
    • 2004
  • To discover a potent strain against wheat leaf rust, soil samples collected from Ilgamho, Seoul, Korea were tested in vivo and a strain belonging to Streptomyces sp. was found to show good antifungal activity when fermented in a broth. The identification of the strain was carried out based on 16S rDNA analysis, and the active compound was separated from the fermented broth. Even though its structure was not determined completely, the authors report the results obtained so far indicate that the fermented broth of the strain showed activity against wheat leaf rust. Therefore, we propose that this may be a potential novel strain showing antifangal activity against Puccinia recondita.

항진균성 6-[(N-Halophenyl)amino]-7-Chloro-5, 8-Quinolinedione의 유전독성 평가 (The Evaluation of Genotoxicities of Antifungal 6-[(N-Halophenyl)amino]-7- Chlore-5,8-Quinolinediones)

  • 유충규;허문영;박윤미;윤여표
    • Biomolecules & Therapeutics
    • /
    • 제3권3호
    • /
    • pp.182-187
    • /
    • 1995
  • The clastogenecity and mutagenicity of antifungal 6-[(N-halophenyl)amino]-7-chloro-5, 8-quinolinedione (RCK 3, 7, 13, 14, and 15) had been evaluated. Salmonella typhimurium reversion assay (Ames test) was used to test the mutagenicity of RCKs. RCK14 was mutagenic in S. typhimurium(TA98 and TA100) with and without rat liver microsomal activation. Whereas RCK3, 7, 13 and 15 were negative in Ames test with Salmonella typhimurium(TA98 and TA100), The clastogenecity was tested on the RCKs with in vivo mouse micronucleus assay. All of RCKs tested did not show any clastogenic effect in mouse peripheral blood. Thus RCKs were not supposed to cause any chromosomal damage termed micronuclei. These results indicate that RCK 3, 7, 13 and 15 have no genotoxic potential under these experimental condition.

  • PDF

Lycorine: A Potential Broad-Spectrum Agent Against Crop Pathogenic Fungi

  • Shen, Jin-Wen;Ruan, Yuan;Ren, Wei;Ma, Bing-Ji;Wang, Xiao-Long;Zheng, Chun-Feng
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권3호
    • /
    • pp.354-358
    • /
    • 2014
  • A screening test showed that lycorine exhibited significant antifungal activity against 24 pathogenic crop fungi at concentrations of 500 ${\mu}g/ml$ and 100 ${\mu}g/ml$, respectively. Fusarium graminearum was selected for antifungal mechanism studies by observing its mycelial morphology and investigating the variations in its conductivity. In addition, the substance absorption and metabolism of F. graminearum were explored. The mechanism was revealed as being one by which lycorine destroyed the cellular membrane and further influenced substance absorption and cell metabolism.

Antifungal Properties of Streptomyces bacillaris S8 for Biological Control Applications

  • Da-Ran Kim;Chang-Wook Jeon;Youn-Sig Kwak
    • The Plant Pathology Journal
    • /
    • 제40권3호
    • /
    • pp.322-328
    • /
    • 2024
  • Soybean (Glycine max), a crucial global crop, experiences yearly yield reduction due to diseases such as anthracnose (Colletotrichum truncatum) and root rot (Fusarium spp.). The use of fungicides, which have traditionally been employed to control these phytopathogens, is now facing challenges due to the emergence of fungicide-resistant strains. Streptomyces bacillaris S8 strain S8 is previously known to produce valinomycin t through a nonribosomal peptide synthetase (NRPS) pathway. The objective of this study was to evaluate the antifungal activity of S. bacillaris S8 against C. truncatum and Fusarium sp., assessing its efficacy against soybean pathogens. The results indicate that strain S8 effectively controlled both above-ground and underground soybean diseases, using the NRPS and NRPS-related compound, suggesting its potential as a biological control in plant-microbe interactions. These findings underscore the pivotal role of the stain S8 in fostering healthy soybean microbial communities and emphasize the significance of microbiota structure studies in unveiling potent biocontrol agents.

Isolation of Antifungal Compound and Biocontrol Potential of Lysobacter antibioticus HS124 against Fusarium Crown Rot of Wheat

  • Monkhung, Sararat;Kim, Yun-Tae;Lee, Yong-Seong;Cho, Jeong-Yong;Moon, Jae-Hak;Kim, Kil-Yong
    • 한국토양비료학회지
    • /
    • 제49권4호
    • /
    • pp.393-400
    • /
    • 2016
  • Fusarium graminearum is the main cause of substantial economic loss in wheat production. The aim of this study is to investigate biocontrol potential of Lysobacter antibioticus HS124 against F. graminearum and to purify an antifungal compound. In preliminary study, n-butanol crude extract revealed destructive alterations in the hyphal morphology of F. graminearum and almost degraded with $1,000{\mu}g\;mL^{-1}$ concentration. For further study, the antifungal compound extracted from the n-butanol crude extract of L. antibioticus HS124 was identified as N-Butyl-tetrahydro-5-oxofuran-2-carboxamide ($C_9H_{16}NO_3$) using NMR ($^1H-NMR$, $^{13}C-NMR$, $^1H-^1H\;COSY$, HMBC, and HMQC), and HR-ESI-MS analysis. To our knowledge, N-Butyl-tetrahydro-5-oxofuran-2-carboxamide may be a novel compound with molecular weight of 186.1130. The minimum inhibitory concentration value of antifungal compound was $62.5{\mu}g\;mL^{-1}$ against F. graminearum. In an in vivo pot experiment, crown rot disease from F. graminearum was inhibited when wheat seeds were treated with both HS124 culture and F. graminearum. Growth of wheat seedling was enhanced by treatment of HS124 compared to control. Our results suggest that L. antibioticus HS124 characterized in this study could be successfully used to control F. graminearum and could be used as an alternative to chemical fungicides in modern agriculture.

Entomopathogenic Fungi as Dual Control Agents against Both the Pest Myzus persicae and Phytopathogen Botrytis cinerea

  • Yun, Hwi-Geon;Kim, Dong-Jun;Gwak, Won-Seok;Shin, Tae-Young;Woo, Soo-Dong
    • Mycobiology
    • /
    • 제45권3호
    • /
    • pp.192-198
    • /
    • 2017
  • The green peach aphid (Myzus persicae), a plant pest, and gray mold disease, caused by Botrytis cinerea, affect vegetables and fruit crops all over the world. To control this aphid and mold, farmers typically rely on the use of chemical insecticides or fungicides. However, intensive use of these chemicals over many years has led to the development of resistance. To overcome this problem, there is a need to develop alternative control methods to suppress populations of this plant pest and pathogen. Recently, potential roles have been demonstrated for entomopathogenic fungi in endophytism, phytopathogen antagonism, plant growth promotion, and rhizosphere colonization. Here, the antifungal activities of selected fungi with high virulence against green peach aphids were tested to explore their potential for the dual control of B. cinerea and M. persicae. Antifungal activities against B. cinerea were evaluated by dual culture assays using both aerial conidia and cultural filtrates of entomopathogenic fungi. Two fungal isolates, Beauveria bassiana SD15 and Metarhizium anisopliae SD3, were identified as having both virulence against aphids and antifungal activity. The virulence of these isolates against aphids was further tested using cultural filtrates, blastospores, and aerial conidia. The most virulence was observed in the simultaneous treatment with blastospores and cultural filtrate. These results suggest that the two fungal isolates selected in this study could be used effectively for the dual control of green peach aphids and gray mold for crop protection.