DOI QR코드

DOI QR Code

Isolation of Antifungal Compound and Biocontrol Potential of Lysobacter antibioticus HS124 against Fusarium Crown Rot of Wheat

  • Monkhung, Sararat (Crop Production Technology Program, Faculty of Animal Science and Agricultural Technology, Silpakorn University, Phetchaburi Information Technology Campus) ;
  • Kim, Yun-Tae (Future Agricultural Strategy Institute) ;
  • Lee, Yong-Seong (Division of Food Technology, Biotechnology and Agrochemistry, Institute of Environmentally-Friendly Agriculture, Chonnam National University) ;
  • Cho, Jeong-Yong (Department of Food Engineering, Mokpo National University) ;
  • Moon, Jae-Hak (Department of Food Science and Technology, and Functional Food Research Center, Chonnam National University) ;
  • Kim, Kil-Yong (Division of Food Technology, Biotechnology and Agrochemistry, Institute of Environmentally-Friendly Agriculture, Chonnam National University)
  • Received : 2016.08.02
  • Accepted : 2016.08.29
  • Published : 2016.08.31

Abstract

Fusarium graminearum is the main cause of substantial economic loss in wheat production. The aim of this study is to investigate biocontrol potential of Lysobacter antibioticus HS124 against F. graminearum and to purify an antifungal compound. In preliminary study, n-butanol crude extract revealed destructive alterations in the hyphal morphology of F. graminearum and almost degraded with $1,000{\mu}g\;mL^{-1}$ concentration. For further study, the antifungal compound extracted from the n-butanol crude extract of L. antibioticus HS124 was identified as N-Butyl-tetrahydro-5-oxofuran-2-carboxamide ($C_9H_{16}NO_3$) using NMR ($^1H-NMR$, $^{13}C-NMR$, $^1H-^1H\;COSY$, HMBC, and HMQC), and HR-ESI-MS analysis. To our knowledge, N-Butyl-tetrahydro-5-oxofuran-2-carboxamide may be a novel compound with molecular weight of 186.1130. The minimum inhibitory concentration value of antifungal compound was $62.5{\mu}g\;mL^{-1}$ against F. graminearum. In an in vivo pot experiment, crown rot disease from F. graminearum was inhibited when wheat seeds were treated with both HS124 culture and F. graminearum. Growth of wheat seedling was enhanced by treatment of HS124 compared to control. Our results suggest that L. antibioticus HS124 characterized in this study could be successfully used to control F. graminearum and could be used as an alternative to chemical fungicides in modern agriculture.

Keywords

References

  1. Abdulkadir, M. and S. Waliyu. 2012. Screening and isolation of the soil bacteria for ability to produce antibiotics. Europ. J. Appl. Sci. 4(5):211-215.
  2. Agrios, G.N. 2005. Plant pathology. 5th edition. Academic Press, Inc., London. 535-538.
  3. Beneduzi, A., A. Ambrosini, and L.M.P. Passaglia. 2012. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology. 35(4):1044-1051. https://doi.org/10.1590/S1415-47572012000600020
  4. Cao, Z.Y. and S.Y. Yang. 2006. A review on relations between pathogenicity and melanin of plant fungi. Microbiology. 33: 154-158.
  5. Castro, R.O., E.V. Cantero, and J.L. Bucio. 2008. Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signal Behav. 3(4):263-265. https://doi.org/10.4161/psb.3.4.5204
  6. Christensen, P. and F.D. Cook. 1978. Lysobacter, a new genus of nonfruiting, gliding bacteria with high base ratio. Int. J. Syst. Bacteriol. 28:367-393. https://doi.org/10.1099/00207713-28-3-367
  7. Daoubi, M.R., A.B. Hernandez-Galan. and I.G. Collado. 2005. Screening study of lead compounds for natural product-based fungicides: antifungal activity and biotransformation of 6alpha, 7alpha-dihydroxy-betahimachalene by Botrytis cinerea. J. Agric. Food Chem. 53:6673-6677. https://doi.org/10.1021/jf050697d
  8. Ekici, O.K. and G.Y. Yuen. 2004. Comparison of strains of Lysobacter enzymogenes and PGPR for induction of resistance against Bipolaris sorokiniana in tall fescue. Biol. Control. 30(2):446-455. https://doi.org/10.1016/j.biocontrol.2004.01.014
  9. Gomez, E.R., J. Postma, J.M. Raaijmakers, and I. de Bruijn. 2015. Diversity and activity of Lysobacter species from disease suppressive soils. Front. Microbiol. 6:1243.
  10. Hans, R. 2006. The Prokaryotes. 3rd. A Handbook on the biology of bacteria. The genus Lysobacter. Springer-Verlag New York 6:939-957.
  11. Jacobson, E.S. 2000. Pathogenic roles for fungal melanins. Clin. Microbiol. Rev. 13(4):708-717. https://doi.org/10.1128/CMR.13.4.708-717.2000
  12. Jamal, Q., Y.S. Lee, H.D. Jeon, Y.S. Park, and K.Y. Kim. 2015. Isolation and biocontrol potential of Bacillus amyloliquefaciens Y1 against fungal plant pathogens. Korean J. Soil Sci. Fert. 48(5):1-7. https://doi.org/10.7745/KJSSF.2015.48.1.001
  13. Ji, G.H., L.F. Wei, Y.Q. He, Y.P. Wu, and X.H. Bai. 2008. Biological control of rice bacterial blight by Lysobacter antibioticus strain 13-1. Biol. Contr. 45:288-296. https://doi.org/10.1016/j.biocontrol.2008.01.004
  14. Jia, S.H., M.A. Gururanib, and S.C. Chun. 2014. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from korean rice cultivars. Microbiol. Res. 169:83-98. https://doi.org/10.1016/j.micres.2013.06.003
  15. Johansson, P.M., L. Johnsson, and B. Gerhardson. 2003. Suppression of wheat-seedling diseases caused by Fusarium culmorum and Microdochium nivale using bacterial seed treatment. Plant Pathol. 52:219-227. https://doi.org/10.1046/j.1365-3059.2003.00815.x
  16. Jung, B., S.Y. Park, Y.W. Lee, and J. Lee. 2013. Biological efficacy of Streptomyces sp. strain BN1 against the cereal head blight pathogen Fusarium graminearum. Plant Pathol. J. 29(1):52-58. https://doi.org/10.5423/PPJ.OA.07.2012.0113
  17. Kim, Y.S., K. Balaraju, and Y. Jeon. 2016. Biological control of apple anthracnose by Paenibacillus polymyxa APEC128, an Antagonistic rhizobacterium. Plant Pathol. J. 32(3):251-259. https://doi.org/10.5423/PPJ.OA.01.2016.0015
  18. Kloepper, J.W. and M.N. Schroth. 1981. Potato rhizosphere colonization by plant growth-promoting rhizobacteria increases plant development and yield. Phytopathology 71:1078-1082.
  19. Knight, S.C., V.M. Anthony, A.M. Brady, A.J. Greenland, S.P. Heaney, D.C. Murray, K.A. Powell, M.A. Schulz, C.A. Spinks, P.A. Worthington, and D. Youle. 1997. Rationale and perspectives on the development of fungicides. Annu. Rev. Phytopathol. 35:349-372. https://doi.org/10.1146/annurev.phyto.35.1.349
  20. Ko, H.S., R.D. Jin, H.B. Krishnan, S. Lee, and K.Y. Kim. 2009. Biocontrol ability of Lysobacter antibioticus HS124 against Phytophthora blight is mediated by the production of 4-hydroxyphenylacetic acid and several lytic enzymes. Curr. Microbiol. 59:608-615. https://doi.org/10.1007/s00284-009-9481-0
  21. Lee, S.Y., H. Tindwa, Y.S. Lee, K.W. Naing, S.H. Hong, Y. Nam, and K.Y. Kim. 2012. Biocontrol of anthracnose in pepper using chitinase, $\beta$-1,3 glucanase, and 2-furancarboxaldehyde produced by Streptomyces cavourensis SY224. J. Microbiol. Biotechnol. 22(10):1359-1366. https://doi.org/10.4014/jmb.1203.02056
  22. Li, S., C.C. Jochum, F. Yu, K. Zaleta-Rivera, L. Du, S.D. Harris, and G.Y. Yuen. 2008. An antibiotic complex from Lysobacter enzymogenes Strain C3: Antimicrobial activity and role in plant disease control. Phytopathology 98(6):695-701. https://doi.org/10.1094/PHYTO-98-6-0695
  23. Liu, J., J. Wang, J.M. Yao, R.R. Pan, and Z.L. Yu. 2004. Properties of the crude extract of Bacillus subtilis and purification of antimicrobial peptides. Acta Microbiol. Sin. 44(4):511-514.
  24. Liu, W.W., W. Mu, B. Zhu, and F. Liu. 2008. Antifungal activities and components of VOCs produced by Bacillus subtilis G8. Curr. Res. Bacteriol. 1:28-34. https://doi.org/10.3923/crb.2008.28.34
  25. Lovic, B., C. Heck, J. Gallian, and A. Anderson. 1993. Inhibition of the sugar beet pathogens Phoma betae and Rhizoctonia solani by bacteria associated with sugarbeet seeds and roots. J. Sugar Beet Res. 30:169-184. https://doi.org/10.5274/jsbr.30.3.169
  26. Nguyen, X.H., K.W. Naing, Y.S. Lee, J.H. Moon, J.H. Lee, and K.Y. Kim. 2015. Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits. J. Basic Microbiol. 55: 625-634. https://doi.org/10.1002/jobm.201400041
  27. Miedaner, T., C.J.R. Cumagun, and S. Chakraborty. 2008. Population genetics of three important head blight pathogens Fusarium graminearum, F. pseudograminearum and F. culmorum. J. Phytopathol. 156:129-139. https://doi.org/10.1111/j.1439-0434.2007.01394.x
  28. Naing, K.W., M. Anees, S.J. Kim, Y. Nam, Y.C. Kim and K.Y. Kim. 2014. Characterization of antifungal activity of Paenibacillus ehimensis KWN38 against soilborne phytopathogenic fungi belonging to various taxonomic groups. Ann. Microbiol. 64: 55-63. https://doi.org/10.1007/s13213-013-0632-y
  29. Prescott, J.M., P.A. Burnett, E.E. Saari, J. Ranson, J. Bowman, W. de Milliano, R.P. Singh and G. Bekele. 1986. Wheat diseases and pests: a guide for field identification. Mexico, D.F: International Maize and Wheat Improvement Center. p 138.
  30. Russell, P. 1995. Fungicide resistance: occurrence and mangement. J. Agric. Sci. 124:317-323. https://doi.org/10.1017/S0021859600073275
  31. Scherm, B., V. Balmas, F. Spanu, G. Pani, G. Delogu, M. Pasquali, and Q. Migheli. 2013. Fusarium culmorum: causal agent of foot and root rot and head blight on wheat. Mol. Plant Pathol. 14:323-341. https://doi.org/10.1111/mpp.12011
  32. Sivasakthi, S., G. Usharani, and P. Saranraj. 2014. Biocontrol potentiality of plant growth promotion bacteria (PGPR) - Pseudomonas fluorescens and Bacillus subtilis: A review. Afr. J. Agric. Res. 9(16):1265-1277.
  33. Strange, R.N. 2003. Introduction to plant pathology. "Screening, development and application of biological control agents". University College London. p. 133-136.
  34. Vesonder, R.F., A. Ciegler, A.H. Jensen, W.K. Rohwedder, and D. Weislander. 1976. Co-identity of the refusal and emetic principle from Fusarium-infected corn. Appl. Environ. Microbiol. 31:280-285.
  35. Waalwijk, C., P. Kastelein, I. Vries, Z. Kerenyi, T. Van der Lee, T. Hesselink, J. Kohl, and G. Kema. 2003. Major changes in Fusarium spp. in wheat in the Netherlands. Eur. J. Plant Pathol. 109:743-754. https://doi.org/10.1023/A:1026086510156
  36. Weller, D.M. 1988. Biological control of soilborne plant pathogen in the rhizospheres with bacteria. Annu. Rev. Phytopathol. 26:379-407. https://doi.org/10.1146/annurev.py.26.090188.002115
  37. Weller, D.V. 2007. Pseudomonas biocontrol agents of soilborne pathogens: Looking back over 30 years. Phytopathology. 97: 250-256. https://doi.org/10.1094/PHYTO-97-2-0250
  38. Weon, H.Y., B.Y. Kim, Y.K. Baek, S.H. Yoo, S.W. Kwon, E. Stackebrandt, and S.J. Go. 2006. Two novel species, Lysobacter daejeonensis sp. nov. and Lysobacter yangpyeongensis sp. nov., isolated from Korean greenhouse soils. Int. J. Syst. Evol. Microbiol. 56:947-951. https://doi.org/10.1099/ijs.0.64095-0
  39. Weon, H.Y., B.Y. Kim, M.K. Kim, S.H. Yoo, S.W. Kwon, S.J. Go, and E. Stackebrandt. 2007. Lysobacter niabensis sp. nov. and Lysobacter niastensis sp. nov., isolated from greenhouse soils in Korea. Int. J. Syst. Evol. Microbiol. 57: 548-551. https://doi.org/10.1099/ijs.0.64473-0
  40. Xie, Y., S. Wright, Y. Shen, and L. Du. 2012. Bioactive natural products from Lysobacter. Nat. Prod. Rep. 29(11):1277-1287. https://doi.org/10.1039/c2np20064c
  41. Yassin, A.F., W.M. Chen, H. Hupfer, C. Siering, R.M. Kroppenstedt, A.B. Arun, W.A. Lai, F.T. Shen, P.D. Rekha, and C.C. Young. 2007. Lysobacter defluvii sp. nov., isolated from municipal solid waste. Int. J. Syst. Evol. Microbiol. 57: 1131-1136. https://doi.org/10.1099/ijs.0.64966-0
  42. Yoon, M.Y., K.H. Seo, S.H. Lee, G.J. Choi, K.S. Jang, Y.H. Choi, B.J. Cha, and J.C. Kim. 2012. Antifungal activity of benzoic acid from Bacillus subtilis GDYA-1 against fungal phytopathogens. Res. Plant Dis. 18(2):109-116. https://doi.org/10.5423/RPD.2012.18.2.109
  43. Zhang, W., Y. Li, G. Qian, Y. Wang, H. Chen, Y.Z. Li, Y. Shen, and L. Du. 2011. Identification and characterization of the anti-methicillin-resistant Staphylococcus aureus WAP-8294A2 biosynthetic gene cluster from Lysobacter enzymogenes OH11. Antimicrob. Agents Chemother. 55:5581-5589. https://doi.org/10.1128/AAC.05370-11