• Title/Summary/Keyword: Antiferromagnetic phase

Search Result 34, Processing Time 0.024 seconds

Effect of Interface Roughness on Magnetoresistance of[Ni/Mn] Superlattice-Based Spin Valves

  • J.R. Rhee;Kim, M.Y.;J.Y. Hwang;Lee, S.S.
    • Journal of Magnetics
    • /
    • v.6 no.4
    • /
    • pp.145-147
    • /
    • 2001
  • The effect of interface roughness between [Ni/Mn] superlattice and pinned NiFe layer on magnetoresistance (MR) of [Ni/Mn] superlattice-based spin valve films was investigated. Antiferromagnetic phase structure and interface roughness of [Ni/Mn] superlattice spin valve films were compared in the as-deposited and the annealed samples at 240$\^{C}$, respectively. Surface morphology of spin valves was substantially flattened due to the formation of the antiferromatic NiMn phase. In case of Co insertion between Cu and NiFe, the interlace roughness and MR ratio in the annealed [NiMn] superlattice and pinned NiFe/Co layer increased more than those in the annealed [Ni/Mn] superlattice and pinned NiFe layers respectively.

  • PDF

Crystallographic, Magnetic and Mössbauer Study of Phase Transition in LaVO3

  • Yoon, Sung-Hyun
    • Journal of Magnetics
    • /
    • v.12 no.3
    • /
    • pp.108-112
    • /
    • 2007
  • Nature of phase transition in $LaVO_3$ has been studied using X-ray diffraction, SQUID magnetometer, and $M\"{o}ssbauer$ spectroscopy with 1% of $^{57}Fe$ doped sample. The crystal structure was orthorhombic with space group Pnma. Antiferromagnetic phase transition temperature $T_N$ was 140K, below which a weak ferromagnetic trace has been found. $M\"{o}ssbauer$ spectra below $T_N$ were single set of hyperfine sextet, which enabled us to discard the possibility of two inequivalent magnetic sites or uncompensated antiferromagnetism. Hyperfine magnetic field abruptly disappeared as low as about 90K, much below $T_N$.

Effect of composition and structure on exchange anisotropy of IrxMn(100-x)/NiFe films

  • Suh, Su-jung;Park, Young-suk;Ro, Jae-chul;Yong-sung;Yoon, Dae-ho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.91-95
    • /
    • 1998
  • Exchange anisotropy between IrMn antiferromagnetic layer and NiFe ferromagnetic layer has been studied in IrxMn(100-x)/NiFe/Buffr/Si(100) films deposited by D. C. magnetron sputtering method. Among Zr, Ta, and Cu used as buffer layer, Zr and Ta enhanced the fcc(111) texture of NiFe and IeMn layer, but Cu did not affect microstructure of those layer. Strong fcc(111) texture of IrMn layer was confirmed to be the origin of exchange anisotropy of IrMn. Ir composition control in IrMn layer showed that {{{{ gamma -phase}}}} IrMn is stabilized between 10 and 30 at % Ir, an 21 at. % Ir in IrMn layer was optimum composition that showed maximum exchange anisotropy field. above 200 ${\AA}$ thickness of IrMn, antiferromagnetic property is stabilzed to show saturated exchange anisotropy field. Based pressure was confirmed to be critical requisite in IrMn-based spin-valve GMR system.

  • PDF

Anomalous Exchange Bias of the Top and Bottom NiFe Layers in NiFe/FeMn/NiFe Based Spin Valve Multilayers (NiFe/FeMn/NiFe 스핀밸브 구조의 다층박막에서 상 하부 NiFe 두께에 따른 교환바이어스 조사)

  • S.M. Yoon;J.J. Lim;V.K. Sankar;Kim, C.G.;Kim, C.O.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.212-212
    • /
    • 2003
  • Many of the spin valve multilayer structures with FeMn as antiferromagnetic layer consist of a NiFe/FeMn/NiFe trilayer where the bottom NiFe layer is the seed layer to facilitate the growth of (111) gama-FeMn antiferromagnetic phase and the top NiFe layer forms the pinned layer[1], In this study, exchange bias of bottom NiFe layer has been investigated as functions of thicknesses of top and bottom NiFe in NiFe/FeMn/NiFe, prepared by rf magnetron sputtering, MH-loop was measured by vibration sample magnetometer (VSM). Two hysteresis loops are corresponded to bottom and top layers, similar to reported loops in spin valve structure. Exchange bias of bottom NiFe could be induced by the interfacial coupling between bottom NiFe and FeMn. But those coupling are strongly dependent on the top and bottom NiFe thicknesses, revealing anomalous character ul exchange bias of bottom NiFe layer.

  • PDF

Time-Resolved Photoexcitation Dynamics of Electrical Conductivity of Magnetic Organic Superconductor λ-(BETS)2Fe0.45Ga0.55Cl4

  • Sabeth, Farzana;Islam, Md. Serajul;Endo, Tadashi;Ohta, Nobuhiro
    • Rapid Communication in Photoscience
    • /
    • v.4 no.1
    • /
    • pp.25-28
    • /
    • 2015
  • The time-resolved photoexcitation dynamics of electrical conductivity of the magnetic organic superconductor ${\lambda}-(BETS)_2Fe_{0.45}Ga_{0.55}Cl_4$ has been studied with a nanosecond visible laser pulse at its three different phases, i. e., metallic phase, superconducting phase and insulating phase. A transient increase of the resistance is induced by photoirradiation at all the temperatures measured for all three phases, but the decay profile shows a significant temperature dependence. The relaxation rate in the metallic and insulating phase are different from each other, and the decay time is relatively faster and almost constant in the metallic phase. However, a prolongation of the relaxation time is observed at temperature just around the narrow superconducting phase. Nonbolometric (nonthermal) origin of the observed photoresponse of the electrical conductivity is confirmed in the superconducting phase.

Stabilization and Physical Properties of Ruddlesden-Popper Phase $Sr_3Mn_{2-x}Fe_xO_{7-\delta}(x{\leq}0.3)$ (Ruddlesden-Popper 상 $Sr_3Mn_{2-x}Fe_xO_{7-\delta}(x{\leq}0.3)$의 안정화 및 물성에 관한 연구)

  • Song, Min-Seok;Lee, Jai-Yeoul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.790-793
    • /
    • 2004
  • 이중의 망간 perovskite 블록을 가진 Ruddlesden-Popper 상(R-P phase) $Sr_3Mn_2O_7$ 은 공기중에서 불안정하다. 본 연구에서는 망간 이온 자리에 철 이온을 소량 치환 함으로써 R-P 상을 안정화 시켰으며 이들의 결정구조는 X-선회절 데이터를 이용하여 Rietveld 법으로 정밀화하였다. 안정화에 필요한 Fe 이온의 양은 약 x=0.15로 나타났으며 Fe이온의 양이 증가함에 따라 쉽게 안정화 되었다. 자화율 측정결과 x=0.20 시료는 120K에서 paramgnetic-antiferromagnetic 전이를 나타내었고 이 전이 온도는 치환되는 Fe이온의 양이 증가함에 따라 감소하는 경향을 나타내었다.

  • PDF

Magnetic Properties of Cu-doped AlN Semiconductor (AlN 반도체와 Cu의 도핑 농도에 대한 자성)

  • Kang, Byung-Sub;Lee, Haeng-Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.3
    • /
    • pp.1-4
    • /
    • 2010
  • First-principles calculations based on spin density functional theory are performed to study the spin-resolved electronic properties of AlN doped with a Cu concentration of 6.25%-18.75%. The ferromagnetic state is more energetically favorable state than the antiferromagnetic state or the nonmagnetic state. For $Al_{0.9375}Cu_{0.0625}N$, a global magnetic moment of 1.26 mB per supercell, with a localized magnetic moment of 0.75 $m_B$ per Cu atom is found. The magnetic moment is reduced due to an increase in the number of Cu atoms occupying adjacent cation lattice position. For $Al_{0.8125}Cu_{0.1875}N$, the magnetism of the supercell disappears by the interaction of the neighboring Cu atoms. The nonmagnetic to ferromagnetic phase transition is found to occur at this Cu concentration. The range of concentrations that are spin-polarized should be restricted within very narrow.

Theoretical Investigation of the Metallic Spacer-Layer Formation of Fe/Si Multilayered Films

  • Rhee, J.Y.;Kudryavtsev, Y.V.;Kim, K.W.;Lee, Y.P.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.2
    • /
    • pp.76-78
    • /
    • 2002
  • We have carried out the first-principle electronic structure calculations to investigate the spacer layer formation of Fe/Si multilayered films (MLF) and compared with the results obtained by optical spectroscopy. The computer-simulated spectra based on various structural models of MLF showed that neither FeSi$_2$ nor B2O-phase FeSi, which are semiconducting, could be considered as the spacer layers in the Fe/Si MLF for the strong antiferromagnetic coupling. The optical properties of the spacer extracted from the effective optical response of the MLF strongly support its metallic nature. The optical conductivity spectra of various phases of Fe-Si compounds were calculated and compared with the extracted optical properties of the spacer. From the above theoretical investigations it is concluded that a E2-phase metallic FeSi compound is spontaneously formed at the interfaces during deposition.

  • PDF

Effect of Ni dopant on the multiferroicity of BiFeO3 ceramic

  • Hwang, J.S.;Yoo, Y.J.;Kang, J.H.;Lee, K.H.;Lee, B.W.;Park, S.Y.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.139.1-139.1
    • /
    • 2016
  • Multiferroic materials are of great interest because of its potential applications in the design of devices combining magnetic, electronic and optical functionalities. Among various multiferroic materials, $BiFeO_3$(BFO) is known to be one of the intensively focused mainly due to the possibility of multiferroism at device working temperature (> $200^{\circ}C$). However, leakage current and weak polarization resulting from oxygen deficiency and crystalline defect should be resolved. Furthermore the magnetic ordering of pure BFO mainly prefers to have antiferromagnetic coupling. Up to now many attempts have been performed to improve the ferromagnetic and the ferroelectric properties of BFO by doping. In this work, we investigated the effects of Ni substitution on the multiferroism of bulk BFO. Four BFO samples (a pure BFO and three Ni-doped BFO's; $BiFe_{0.99}Ni_{0.01}O_3$, $BiFe_{0.98}Ni_{0.02}O_3$ and $BiFe_{0.97}Ni_{0.03}O_3$) were synthesized by the standard solid-state reaction and rapid sintering technique. The XRD results reveal that Ni atoms are substituted into Fe-sites and give rise to phase transition of cubic to rhombohedal. By using vibrating sample magnetometer and standard ferroelectric tester, the multiferroic properties at room temperature were characterized. We found that the magnetic moment of Ni-doped BFO turned out to be maximized for 3% of Ni dopant.

  • PDF

Magnetoresistance Effects in Cr5S6 Single Crystal (Cr5S6 단결정의 자기저항 효과)

  • Lee, Kyung-Dong;Song, Ki-Myung;Hur, Nam-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.6
    • /
    • pp.207-211
    • /
    • 2010
  • We have investigated the magnetoresistance effect in $Cr_5S_6$ single crystals prepared by vapor transport method. Room temperature X-ray diffraction (XRD) study reveals the phase formation of the single crystals with trigonal crystal structure. The magnetization was measured as a function of temperature (5 K~400 K) and applied magnetic field (0.1 T and 5 T). The magnetization curve as a function of temperature reveals the two transition states of $Cr_5S_6$: one from antiferromagnetic to ferrimagnetic state at ~150 K and the other from ferrimagnetic to paramagnetic state at ~300 K. Temperature dependent resistivity at 0 T and 5 T magnetic field shows the metallic behavior, showing the transition from antiferromagnetic to ferrimagnetic state at ~150 K. Magnetic field dependence of magnetization was measured at four fixed temperatures viz. 100 K, 150 K, 200 K, and 300 K. It is observed that at 200 K and 300 K it shows well M-H hysteresis behavior, whereas at 100 K and 150 K it shows non-hysteretic nature. A negative magnetoresistance (MR) of -2% is observed at 5 T for $Cr_5S_6$ single crystal at 150 K, near the antiferromagnetic transition temperature.