• Title/Summary/Keyword: Anticancer Activity

Search Result 1,249, Processing Time 0.029 seconds

Isolation and Identification of Anticancer Compounds from Eucommia ulmoides Leaves (두충잎의 항암성분 분리 및 동정)

  • 김종배;박정륭;전정례;차명화
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.4
    • /
    • pp.732-738
    • /
    • 2001
  • This study was attempted to isolate and identify the anticancer compounds from Eucommia ulmoides leaves using a human colon cancer cell line HCT-116. The petroleum ether extracts with anticancer activity was chromatographed on silica gel TLC and finally anticancer compounds was purified by HPLC. Their chemical structures were roughly elucidate by UV-VIS absorption spectral data HPLC elution pattern and FAM/MS spectroscopy. From this study these compounds were suspected to be pheophytin a formed by the removal of $Mg^{2+}$ from chlorophyll a and pyropheophytina formed by the removal of acetate group from pheophytin a respectively. To confirm the anticancer effects against HCT-116 cancer cell petroleum ether extract fractions of column chromatography and fractions separated on TLC were tested. All samples tested including the extract of petroleum ether fractions of column chromatograph and three bands (0.13,0.19,0.25) of TLC appeared to inhibit the growth of HCT-116 cancer cell however especially 0.19 and 0.25 fractions separated on TLC plate revealed the strongest effect. These results suggest that chlorophyll derivatives in Eucommia ulmoides may be potential anticancer agents against a human colon cancer cell HCT-116.

  • PDF

Effect of Garlic Extracts with Extraction Conditions on Antioxidant and Anticancer Activity (추출조건에 따른 마늘 추출물의 항산화 및 항암활성 효과)

  • Kim, Hae-Ja;Han, Choong-Ho;Kim, Nan-Young;Lee, Eun-Kyoung;Lee, Ki-Nam;Cho, Hwa-Eun;Choi, Yun-Hee;Chong, Myong-Soo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.1
    • /
    • pp.111-117
    • /
    • 2010
  • The purpose of this study was to investigate the effect of garlic(Allium sativum L.) extracts with extraction conditions on antioxidant and anticancer activity. The extracts prepared for garlic by hot temperature extraction (HG), low temperature extraction (LG), UMPM extraction (UG), fermentation (FG) and black garlic hot temperature (BG) method. Content of total polyphenol compound was the BG higher than other extracts. The EDA (electron donating ability) and SOD-like activity was increased in dose-dependent manners, and the activity of BG and UM was significantly higher than LG and FG. We examined cytotoxicity, nitric oxide production of Raw 264.7 cell and inhibition of HT 1080 cell by MTT assay. All extracts does not have any toxic effects in macrophages(Raw 264.7). And UG inhibited the production of nitrite in Raw 264.7 cells activated with LPS. The antitumor effects of LG and UG on HT 1080 cell was indicated a significantly inhibition activity. These results suggested that UG (UMPM extraction of garlic) have activities of antioxidant, anticancer effects.

Enhancement of Immunomodulatory and Anticancer Activity of Fucoidan by Nano Encapsulation

  • Qadir, Syed Abdul;Kwon, Min-Chul;Han, Jae-Gun;Ha, Ji-Hye;Jin, Ling;Jeong, Hyang-Suk;Kim, Jin-Chul;You, Sang-Guan;Lee, Hyeon-Yong
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1254-1260
    • /
    • 2008
  • The aim of the present study was to prepare nanosample of fucoidan using lecithin as encapsulated material and to investigate the anticancer and immunomodulatory activity of nanoparticle in vitro. The nanoparticles have been characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Confocal microscopy confirmed the internalization of the fucoidan conjugates into the immune cells. The uptake of nanoparticles was confirmed with confocal microscopy demonstrating their localization in the cells. The anticancer activity was increased over 5-10% in different cancer cells of fucoidan nanoparticle as compare with fucoidan. The human B and T cells growth and the secretion of interleukin-6 and tumor necrosis factor-a from B cell were also improved by fucoidan nanoparticle because of the rapid absorption of nanoparticle into the cells as compare to fucoidan. At 0.6 mg/mL concentrations, the fucoidan nanoparticle showed better activity than 1.0 mg/mL concentration in T cell growth because the cells reached their saturation capacity. When the fucoidan was encapsulated in lecithin, its anticancer as well as its immunomodulatory activity proved to be superior from that of itself in pure form.

Studies on Immunomodulatory and Antioxidant Activities of Astragali membranacei Radix according to the Cultivated Years (황기(黃芪)의 재배 년수에 따른 면역 및 항산화 활성 연구)

  • Jung, Chul
    • Korean Journal of Korean Medical Institute of Dermatology and Aesthetics
    • /
    • v.1 no.1
    • /
    • pp.53-90
    • /
    • 2005
  • Purpose: Contents of astragaloside I, II and IV, cytotoxicity, anticancer activity, immunomodulatory activity and antioxidant capacity were to be compared as a function of the cultivated years as one, three, five and seven years. Method: Major components of Astragali membranacei Radix were separated as astragaloside I, astragaloside II, astragaloside IV by HPLC analysis. Cytotoxicity and anticancer activities were measured by MTT and SRB assay. For immunomodulatory activity, the secretion of IL -6 and $TNF-{\alpha}$, NK cell activation and macrophage activation were observed as well as kinetics of responding to human T cells by a microphysiometer. In vitro antioxidant activities were measured by several radical scavenging activities of superoxide anion radican, DPPH, LDL and linoleic acid. For in vivo activity, the activation of SOD, GSH-px, catalase, ALDH and ADH was measured as well the relative weight of liver. Result : 1. For HPLC analysis, the contents of all of astragaloside I, astragaloside II, astragaloside IV were in order of three, five, one and seven years. 2. The cytotoxicity of normal human lung cell line, HEL299 showed lower than 18% in adding 0.25 mg/ml, and 28.9% in adding 1.0 mg/ml of water extract of seven year root. For methanol extracts, three year root showed highest cytotoxicity as 35.2 % and there was no difference between the cultivated years. 3. For anticancer activities, methanol extracts of one and three year roots showed relatively high inhibition of human stomach cancer cells, AGS, breast cancer cells, MCF-7, lung cancer cells, A549 and liver cancer cell, Hep3B as well as high selectivities. 4. The water extract of seven year root could yield high secretion of IL-6 from both human Band T cells while the methanol extracts of three and five year roots secreted high amounts of IL-6 and $TNF-{\alpha}$ from both Band T cells. 5. As a result of in vitro antioxidant activities, both water and methanol extracts from five and seven year roots showed high activities for superoxide anion radical scavenging activity, inhibiting linoleic acid peroxide and contents of total phenols. 6. For in vivo tests, Mn-SOD and GSH-px activities and weight of liver were better in adding seven year root. For ALDH activity one year root was better and for ADH activity five year root. Overall speaking, seven year root showed relatively better antioxidant activities. Conclusion:There was difference of the contents of astragaloside I, astragaloside II, astragaloside IV according to cultivation year. Methanol extract showed better activities of anticancer and immune activation rather than water extract Interestingly enough, for methanol extracts, overall activities were improved as the cultivation year increased. There might be further investigation required for the clinical uses of the results as several biological activities varied according to the cultivated year of Astragali membranacei Radix.

  • PDF

In vitro biological evaluation of 100 selected methanol extracts from the traditional medicinal plants of Asia

  • Li, Chunmei;Wang, Myeong-Hyeon
    • Nutrition Research and Practice
    • /
    • v.8 no.2
    • /
    • pp.151-157
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: In Asia, various medicinal plants have been used as the primary sources in the health care regimen for thousands of years. In recent decades, various studies have investigated the biological activity and potential medicinal value of the medicinal plants. In this study, 100 methanol extracts from 98 plant species were evaluated for their biological activities. MATERIALS/METHODS: The research properties, including 1,1-diphenyl-2-pic-rylhydrazyl (DPPH) radical scavenging activity, ${\alpha}$-glucosidase and ${\alpha}$-tyrosinase inhibitory effects, anti-inflammatory activity, and anticancer activity were evaluated for the selected extracts. RESULTS: Fifteen of the extracts scavenged more than 90% of the DPPH radical. Among the extracts, approximately 20 extracts showed a strong inhibitory effect on ${\alpha}$-glucosidase, while most had no effect on ${\alpha}$-tyrosinase. In addition, 52% of the extracts showed low toxicity to normal cells, and parts of the extracts exhibited high anti-inflammatory and anticancer activities on the murine macrophage cell (RAW 264.7) and human colon cancer cell (HT-29) lines, respectively. CONCLUSIONS: Our findings may contribute to further nutrition and pharmacological studies. Detailed investigations of the outstanding samples are currently underway.

Synthesis, Antibacterial, Docking and Anticancer Evaluation of N-Substituted Benzoyl Derivatives

  • Arthi, P.;Shobana, S.;Srinivasan, P.;Rahiman, A. Kalilur
    • Journal of Integrative Natural Science
    • /
    • v.7 no.4
    • /
    • pp.241-252
    • /
    • 2014
  • A series of N-benzoylated ligands incorporating three different benzoyl groups 2,2'-(benzoyliminodiethylene)-4-substituted phenols ($L^{1,4,7}$), 2,2'-(4-nitrobenzoyliminodiethylene)-4-substituted phenols ($L^{2,5,8}$) and 2,2'-(3,5-dinitrobenzoyliminodiethylene)-4-substituted phenols ($L^{3,6,9}$) were synthesized and characterized by IR, $^1H$ NMR, $^{13}C$ NMR and mass spectroscopy. The In vitro antibacterial activity of investigated ligands were tested against human pathogenic bacteria such as four Gram (-) Enterococcus faecalis, Pseudomonas aeruginosa, Staphylococcus aureus, Vibrio cholera, Vibrio harveyi and two Gram (+) Staphylococcus aureus, Streptococcus mutans. Furthermore, docking studies were undertaken to gain insight into the possible binding mode of these compounds with the binding site of the topoisomerase II (PDB: 4FM9) enzyme which is involved in DNA superhelicity and chromosome seggregation. The N-benzoylated derivatives $L^{5,7,8}$ have significant anticancer activity as Topoisomerase inhibitors. The ligands $L^5$ and $L^8$ were tested for their anticancer activity against human liver adenocarcinoma (HepG2) cell line with the MTT assay.

Orthosiphon pallidus, a Potential Treatment for Patients with Breast Cancer

  • Singh, Mukesh K.;Dhongade, Hemant;Tripathi, Dulal Krishna
    • Journal of Pharmacopuncture
    • /
    • v.20 no.4
    • /
    • pp.265-273
    • /
    • 2017
  • Objective: Orthosiphon pallidus (O. pallidus), which belongs to the Lamiaceae family, is a popular garden plant that is widely used for the treatment of various diseases, such as urinary lithiasis, fever, hepatitis, cancer and jaundice. The objective of the present work was to investigate the antioxidant free-radical scavenging and the anticancer activities of O. pallidus against human breast-cancer cell lines. Methods: The antioxidant activity of Orthosiphon pallidus aqueous extract (OPAE) was investigated using different models, such as the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the 2, 2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) models, as were the $Fe^+$ chelation, the hydroxyl radical and superoxide radical scavenging, and total reducing power activities. The anticancer activities of the extract were determined by using the 3-(4, 5- dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) and the sulforhodamine (SRB) assays on the MCF-7 and the MDA-MB-231 cancer cell lines. Results: The aqueous Orthosiphon pallidus extract showed potent activity in in-vitro models. It significantly inhibited the scavenging of hydroxyl and superoxide radicals, but induced a remarkable $Fe^+$ chelation activity. For both cell lines, the percent cytotoxicity was found to increase steadily with increasing OPAE concentration up to $240{\mu}g/mL$. Conclusion: These results suggest that Orthosiphon pallidus has excellent antioxidant, antimicrobial, and anticancer activities against human breast-cancer cell lines.

Features and Functions of Purple Pigment Compound in Halophytic Plant Suaeda japonica : Antioxidant/Anticancer Activities and Osmolyte Function in Halotolerance

  • Chung, Sang Ho
    • Korean Journal of Plant Resources
    • /
    • v.31 no.4
    • /
    • pp.342-354
    • /
    • 2018
  • Suaeda japonica is a halophytic plant that lives in mudflat at intertidal zone of western and southern coastal areas of Korea. The seawater-living plants showed a purple color during their whole life. In contrast, freshwater-living plants displayed a green color in leaves. When seawater-living plants were transferred to potting soil, the purple color was gradually changed to green in the leaves. The extracted purple pigment compound exhibited typical characteristics of betacyanin that were represented by water solubility, pH- and temperature-dependent color changes, sensitivity to light, UV-Vis spectra, and gel electrophoretic migration pattern. The LC-MS analysis of the extracted pigment compound showed the presence of two major protonated molecular ions ($[M+H]^+$) at m/z 651.1 and m/z 827.1. Antioxidant activity of the pigment compound was determined using stable free radical DPPH assay. It was found to have an antioxidant activity that is linearly increased in proportion to the reaction time for up to 30 min, and the activity was comparable to that of control BHA at 9.0 mg/ml. The anticancer activity against several tumor cell lines was also examined following the MTT assay. The significant growth inhibitory effect was observed on two tumor cell lines, SW-156 (human kidney carcinoma) and HEC-1B (human endometrial adenocarcinoma). Probably, the pigment compound may function as an osmolyte to uphold halotolerant physiological processes in saline environment.

Anticancer Drugs at Low Concentrations Upregulate the Activity of Natural Killer Cell

  • Hyeokjin Kwon;Myeongguk Jeong;Yeeun Kim;Go-Eun Choi
    • Biomedical Science Letters
    • /
    • v.29 no.3
    • /
    • pp.178-183
    • /
    • 2023
  • Natural killer (NK) cells are innate cytotoxic lymphoid cells that actively prevent neoplastic development, growth, and metastatic dissemination in a process called cancer immunosurveillance. Regulation of the cytotoxic activity of NK cells relies on integrated interactions between inhibitory receptors and numerous activating receptors that act in tandem to eliminate tumor cells efficiently. Conventional chemotherapy is designed to produce an anti-proliferative or cytotoxic effect on early tumor cell division. Therapies designed to kill cancer cells and simultaneously maintain host anti-tumor immunity are attractive strategies for controlling tumor growth. Depending on the drug and dose used, several chemotherapeutic agents cause DNA damage and cancer cell death through apoptosis, immunogenic cell death, or other forms of non-killing (i.e., mitotic catastrophe, senescence, autophagy). Among stress-induced immunostimulatory proteins, changes in the expression levels of NK cell activating and inhibitory ligands and tumor cell death receptors play an important role in the detection and elimination by innate immune effectors including NK cells. Therefore, we will address how these cytotoxic lymphocytes sense and respond to high and low concentrations of drug-induced stress to the drug cisplatin, among the various types of drugs that contribute to their anticancer activity.

Biapigenin, Candidate of an Agonist of Human Peroxisome Proliferator-Activated Receptor γ with Anticancer Activity

  • Kim, Jin-Kyoung;Shin, So-Young;Lee, Jee-Young;Lee, So-Jung;Lee, Eun-Jung;Jin, Qinglong;Lee, June-Young;Woo, Eun-Rhan;Lee, Dong-Gun;Yoon, Do-Young;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2717-2721
    • /
    • 2011
  • Peroxisome proliferator-activated receptors (PPARs) are a subfamily of nuclear receptors (NRs). Human peroxisome proliferator-activated receptor gamma (hPPAR${\gamma}$) has been implicated in the pathology of numerous diseases, including obesity, diabetes, and cancer. ELISA-based hPPAR${\gamma}$ activation assay showed that biapigenin increased the binding between hPPAR${\gamma}$ and steroid receptor coactivator-1 (SRC-1) by approximately 3-fold. In order to confirm that biapigenin binds to hPPAR${\gamma}$, fluorescence quenching experiment was performed. The results showed that biapigenin has higher binding affinity to hPPAR${\gamma}$ at nanomolar concentrations compared to indomethacin. Biapigenin showed anticancer activity against HeLa cells. Biapigenin was noncytotoxic against HaCa T cell. All these data implied that biapigenin may be a potent agonist of hPPAR${\gamma}$ with anticancer activity. We will further investigate its anticancer effects against human cervical cancer.