• Title/Summary/Keyword: Anticancer Activity

Search Result 1,265, Processing Time 0.026 seconds

Anti-Inflammatory Activities of (+)-Afzelechin against Lipopolysaccharide-Induced Inflammation

  • In-Chul Lee;Jong-Sup Bae
    • Biomolecules & Therapeutics
    • /
    • v.32 no.4
    • /
    • pp.467-473
    • /
    • 2024
  • In this study, we investigated the potential protective effects of (+)-afzelechin (AZC), a natural compound that is derived from Bergenia ligulata, on lipopolysaccharide (LPS)-induced inflammatory responses. AZC is known to have antioxidant, anticancer, antimicrobial, and cardiovascular protective properties. However, knowledge regarding the therapeutic potential of AZC against LPS-induced inflammatory responses is limited. Thus, we investigated the protective attributes of AZC against inflammatory damage caused by LPS exposure. We examined the effects of AZC on heme oxygenase (HO)-1, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) in LPS-activated human umbilical vein endothelial cells (HUVECs). In addition, the effects of AZC on the expression of iNOS, tumor necrosis factor (TNF)-α, and interleukin (IL)-1β were analyzed in the lung tissues of LPS-injected mice. Data revealed that AZC promoted the production of HO-1, inhibited the interaction between luciferase and nuclear factor (NF)-κB, and reduced the levels of COX-2/PGE2 and iNOS/NO, thereby leading to a decrease in the signal transducer and activator of transcription (STAT)-1 phosphorylation. Moreover, AZC facilitated the nuclear translocation of Nrf2, increased the binding activity between Nrf2 and the antioxidant response elements (AREs), and lowered the expression of IL-1β in the LPS-treated HUVECs. In the animal model, AZC significantly reduced the expression of iNOS in the lung tissue structure and the TNF-α level in the bronchoalveolar lavage fluid. These findings demonstrate that AZC possesses anti-inflammatory properties that regulate iNOS through the inhibition of both NF-κB expression and p-STAT-1. Consequently, AZC has potential as a future candidate for the development of new clinical substances for the treatment of pathological inflammation.

Anti-proliferative Efficacy of Xanthorrhizol on Cancer Cells via Activation of hTAS2R38 among 25 Human Bitter Taste Receptors

  • Yiseul Kim;Hyun-Jin Na;Min Jung Kim
    • Journal of the Korean Society of Food Culture
    • /
    • v.39 no.3
    • /
    • pp.166-172
    • /
    • 2024
  • Human bitter taste-sensing type 2 receptors (hTAS2Rs) are expressed in various human tissues and may be associated with various cell signaling pathways, cell progression, and cell physiology in each tissue. hTAS2Rs can be a potential drug target because it is also expressed in some cancer cells. Xanthorrhizol (XNT) has various biological activities, such as anticancer, antimicrobial, anti-inflammatory, and antioxidant. XNT produces a bitter taste, but the specific hTAS2R activated is unknown, and the hTAS2R-mediated effect of XNT on cancer cells has not been studied. This study discovered the target receptor of XNT among 25 hTAS2Rs and confirmed the possibility of the hTAS2R-mediated inhibition of cancer cell proliferation. XNT activated only one receptor, hTAS2R38 (EC50=1.606±0.021 ㎍/mL), and its activity was inhibited by probenecid, a hTAS2R38 antagonist. When HepG2 and MCF-7 cells were treated with XNT or phenylthiocarbamide (PTC), a known hTAS2R38 agonist, both chemicals inhibited cancer cell proliferation. XNT targets the human bitter taste receptor TAS2R38 and inhibits the proliferation of HepG2 and MCF-7 cells mediated by TAS2R38. This suggests that TAS2R38 may be a new target for disease treatment and a potential new factor for drug development.

Quality characteristics and functionalities of Korean and Japanese spring Baechu cabbages and the kimchi prepared with such cabbages (한국산 및 일본산 봄배추와 이를 이용하여 제조한 김치의 품질특성과 기능성)

  • Park, So-Eun;Bong, Yeon-Ju;Kim, Hee-Young;Park, Kun-Young
    • Food Science and Preservation
    • /
    • v.20 no.6
    • /
    • pp.854-862
    • /
    • 2013
  • We examined the quality characteristics and functionalities of Korean and Japanese spring Baechu cabbages and the kimchi prepared with them. To study the physiochemical properties of the cabbages and the kimchis, we measured their water content, pH, acidity, microbial counts, and springiness. On the third week of the kimchi fermentation at $5^{\circ}C$, their sensory properties and in vitro DPPH radical scavenging and anticancer activities using AGS human gastric cancer cells were determined. The Japanese Baechu contained 97.1% water, and the Korean Baechu, 92.4%. The comparison of the textures of the raw Baechu and the brined Baechu showed that the Korean Baechu had higher springiness scores than the Japanese Baechu. After four-week fermentation, the springiness score of the kimchi with Korean Baechu was 53.5%, significantly higher than the 41.4% of the kimchi with Japanese Baechu. The kimchi prepared with Korean Baechu had a low total bacterial count but higher Lactobacillus sp. and Leuconostoc sp. counts than the kimchi with Japanese Baechu. The kimchi prepared with Korean Baechu had the highest overall acceptability score in the sensory evaluation test. The DPPH radical scavenging activity of the kimchi with Korean Baechu was 83.2%, and that of the kimchi with Japanese Baechu, 46.1%. When the AGS human gastric cancer cells were treated with the kimchis, the kimchi prepared with Korean Baechu showed a 45% cancer cell growth inhibition rate, and the kimchi with Japanese Baechu, 26%, at 1 mg/mL of methanol extracts. At the 2 mg/mL concentration, the kimchis with Korean Baechu and Japanese Baechu showed 97% and 74% inhibition, respectively. The Korean Baechu showed better quality than the Japanese Baechu, and the kimchi prepared with the Korean Baechu showed better kimchi quality and functionality than the Japanese Baechu.

Phytochemical Analysis and Anti-cancer Investigation of Boswellia Serrata Bioactive Constituents In Vitro

  • Ahmed, Hanaa H;Abd-Rabou, Ahmed A;Hassan, Amal Z;Kotob, Soheir E
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7179-7188
    • /
    • 2015
  • Cancer is a major health obstacle around the world, with hepatocellular carcinoma (HCC) and colorectal cancer (CRC) as major causes of morbidity and mortality. Nowadays, there isgrowing interest in the therapeutic use of natural products for HCC and CRC, owing to the anticancer activity of their bioactive constituents. Boswellia serrata oleo gum resin has long been used in Ayurvedic and traditional Chinese medicine to alleviate a variety of health problems such as inflammatory and arthritic diseases. The current study aimed to identify and explore the in vitro anticancer effect of B. Serrata bioactive constituents on HepG2 and HCT 116 cell lines. Phytochemical analysis of volatile oils of B. Serrata oleo gum resin was carried out using gas chromatography-mass spectrometry (GC/MS). Oleo-gum-resin of B. Serrata was then successively extracted with petroleum ether (extract 1) and methanol (extract 2). Gas-liquid chromatography (GLC) analysis of the lipoidal matter was also performed. In addition, a methanol extract of B. Serrata oleo gum resin was phytochemically studied using column chromatography (CC) and thin layer chromatography (TLC) to obtain four fractions (I, II, III and IV). Sephadex columns were used to isolate ${\beta}$-boswellic acid and identification of the pure compound was done using UV, mass spectra, $^1H$ NMR and $^{13}C$ NMR analysis. Total extracts, fractions and volatile oils of B. Serrata oleo-gum resin were subsequently applied to HCC cells (HepG2 cell line) and CRC cells (HCT 116 cell line) to assess their cytotoxic effects. GLC analysis of the lipoidal matter resulted in identification of tricosane (75.32%) as a major compound with the presence of cholesterol, stigmasterol and ${\beta}$-sitosterol. Twenty two fatty acids were identified of which saturated fatty acids represented 25.6% and unsaturated fatty acids 74.4% of the total saponifiable fraction. GC/MS analysis of three chromatographic fractions (I,II and III) of B. Serrata oleo gum resin revealed the presence of pent-2-ene-1,4-dione, 2-methyl- levulinic acid methyl ester, 3,5- dimethyl- 1-hexane, methyl-1-methylpentadecanoate, 1,1- dimethoxy cyclohexane, 1-methoxy-4-(1-propenyl)benzene and 17a-hydroxy-17a-cyano, preg-4-en-3-one. GC/MS analysis of volatile oils of B. Serrata oleo gum resin revealed the presence of sabinene (19.11%), terpinen-4-ol (14.64%) and terpinyl acetate (13.01%) as major constituents. The anti-cancer effect of two extracts (1 and 2) and four fractions (I, II, III and IV) as well as volatile oils of B. Serrata oleo gum resin on HepG2 and HCT 116 cell lines was investigated using SRB assay. Regarding HepG2 cell line, extracts 1 and 2 elicited the most pronounced cytotoxic activity with $IC_{50}$ values equal 1.58 and $5.82{\mu}g/mL$ at 48 h, respectively which were comparable to doxorubicin with an $IC_{50}$ equal $4.68{\mu}g/mL$ at 48 h. With respect to HCT 116 cells, extracts 1 and 2 exhibited the most obvious cytotoxic effect; with $IC_{50}$ values equal 0.12 and $6.59{\mu}g/mL$ at 48 h, respectively which were comparable to 5-fluorouracil with an $IC_{50}$ equal $3.43{\mu}g/mL$ at 48 h. In conclusion, total extracts, fractions and volatile oils of B. Serrata oleo gum resin proved their usefulness as cytotoxic mediators against HepG2 and HCT 116 cell lines with different potentiality (extracts > fractions > volatile oil). In the two studied cell lines the cytotoxic acivity of each of extract 1 and 2 was comparable to doxorubicin and 5-fluorouracil, respectively. Extensive in vivo research is warranted to explore the precise molecular mechanisms of these bioactive natural products in cytotoxicity against HCC and CRC cells.

Some In-Vitro and In-Vivo Biological Activities of Hot Water Extracts from Fruit Body and Cultured Mycelium of Hericium erinaceum (Hericium erinaceum 균사체와 자실체 열수 추출물의 몇몇 In-Vitro 및 In-Vivo 생물활성)

  • Jung, Jae-Hyun;Lee, Kwang-Ho;Lee, Shin-Young
    • KSBB Journal
    • /
    • v.22 no.1
    • /
    • pp.22-29
    • /
    • 2007
  • The water-soluble materials extracted from fruit bodies and mycelium of H. erinaceum were prepared. In-vitro anticancer activities on cancer cells and In-vivo proliferation effect on mouse peritoneal exudate cell and spleen cell of samples were investigated. Also, nitric oxide (NO) generation of peritoneal exudate cell, IL-2 production capacity of spleen cells and phagocytic activity of peritoneal macrophages were examined. The water extracts of H. erinaceum suppressed the proliferation of cancer cell (HeLa, Raw264.7, Jurkat, KATO3, EL4, LyD9) with concentration-dependent. The water extract from fruit body showed better suppression effect than that from mycelium in most of cancer cells used. The anticancer effect of water extract of fruits body in the range of 0.01 and 10 mg/ml for Raw 264.7 and EL4 cell lines were the same as the Taxol with one thousandth equivalent of fruit body concentration. Water extracts of fruit body and liquid-cultured products of H. erinaceum induced nitric oxide (NO) generation of peritoneal exudate cell and increased NO generation by stimulus of lipopolysaccharide. Water extracts alone did not induce the proliferation and IL-2 production capacity of spleen cells. However, spleen's proliferation and IL-2 production were induced significantly by the addition of lipopolysaccharide and Con A (concanavalin A) or Con A alone, and the effectiveness of mycelium extract with water were more active than those from fruit body.

Fermentation Properties and Increased Health Functionality of Kimchi by Kimchi Lactic Acid Bacteria Starters (김치 유산균 Starter를 이용한 김치의 발효 특성 및 기능성 증진 효과)

  • Bong, Yeon-Ju;Jeong, Ji-Kang;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.11
    • /
    • pp.1717-1726
    • /
    • 2013
  • Fermentation characteristics and health functionalities of kimchi by inoculating kimchi lactic acid bacteria (LAB) starters were studied. We manufactured single LAB starter kimchi (Lactobacillus plantarum pnuK, Lactobacillus plantarum 3099K, Leuconostoc mesenteroides pnuK), mixed LAB starter kimchi (Lb. plantarum pnu/Leu. mesenteroides pnuK, Lb. plantarum 3099/Leu. mesenteroides pnuK) with inoculum size of $10^6$ CFU/g, as well as naturally fermented kimchi (NK), and fermented them for 6 days at $15^{\circ}C$. The pH and acidity of the early phase of fermentation were not different, but kimchi with the starters showed rapid changes in the pH and acidity from 2 days of fermentation. As the fermentation progressed, the level of total aerobic bacteria and Lactobacillus sp. increased similarly with or without Lb. plantarum (LP) inoculation. However, the level of Leuconostoc sp. was high in kimchi inoculated with Leuconostoc sp. starter. In the sensory evaluation test, kimchi with starters received higher overall acceptability scores than those of NK; mixed starter added kimchi earned the highest score. In DPPH and hydroxyl radical scavenging activity, kimchi with the starters exhibited higher activity than that of NK. In the MTT assay of HCT-116 and HT-29 human colon cancer cells, NK showed inhibition rates of 63.4 and 51.9%, but LPpnuK achieved 77.1 and 68.8%, respectively. This study showed that inoculating starters in kimchi increased in vitro antioxidant and anticancer activities, and single starter (LP) added kimchi revealed higher functionality than the kimchi with mixed starter. Kimchis with the starters effectively up-regulated the gene expressions of the pro-apoptotic gene of Bax, but down-regulated Bcl-2. They promoted expressions of p53 and p21, and suppressed expressions of inflammation-related genes, iNOS and COX-2, compared with NK. Taken together, it is expected that using starters may help manufacture kimchi with improved sensory quality and health functionality.

Heat Shock Treatments Induce the Accumulation of Phytochemicals in Kale Sprouts (열처리에 의한 케일 새싹의 기능성물질 축적)

  • Lee, Min-Jeong;Lim, Sooyeon;Kim, Jongkee;Oh, Myung-Min
    • Horticultural Science & Technology
    • /
    • v.30 no.5
    • /
    • pp.509-518
    • /
    • 2012
  • The objective of this study was to determine the effect of heat shock treatments on the phytochemicals including antioxidants and anticancer materials in kale (Brassica oleracea L. var. acephala) sprouts. In study I, kale sprouts grown under the growing system for four days were soaked at 40, 50, or $60^{\circ}C$ distilled water for 10, 30, or 60 seconds, and in study II, kale sprouts were soaked at $50^{\circ}C$ distilled water for 10, 20, 30, 45, or 60 seconds. After the heat shock treatments, the sprouts were transferred into normal growing conditions and recovered there for two days. Fresh and dry weights, electrolyte leakage, total phenolic concentration, antioxidant capacity, total flavonoid concentration, phenylalanine ammonia-lyase (PAL) activity, and glucosinolates content of the sprouts were measured before and after the heat shock treatments. As a result, there was a significant decrease in the fresh and dry weight of kale sprouts treated with heat shock compared with control at harvest in study I. Especially, heat shock at $60^{\circ}C$ lead to more pronounced growth inhibition compared with heat treatments at 40 and $50^{\circ}C$. Electrolyte leakage by cell collapse was the highest in the sprouts exposed to $60^{\circ}C$ distilled water, which agreed with the growth results. Heat shock at $50^{\circ}C$ significantly induced the accumulation of phenolic compounds. In study II, fresh weight of kale sprouts at $50^{\circ}C$ heat shock showed a significant decrease compared with the control at one and two days after the treatment. However, the decrease was minimal and dry weight of kale sprouts was not significantly different from that in control. In contrast, the heat shock-treated kale sprouts had higher level of total phenolic concentration than control at harvest. Heat shock treatments at $50^{\circ}C$ for 20 seconds or more showed at least 1.5 and 1.2 times higher total phenolic concentration and antioxidants capacity than control, respectively. The change of the total flavonoid concentration was similar with that of antioxidants. PAL activity after 24 hours of heat shock was higher in all the heat shock-treated sprouts than that in control suggesting heat shock may stimulate secondary metabolic pathway in kale sprouts. Seven glucosinolates were identified in kale sprouts and soaking the sprouts with $50^{\circ}C$ water for 20 seconds had a pronounced impact on the accumulation of total glucosinolates as well as two major glucosinolates, progoitrin and sinigrin, at harvest. In conclusion, this study suggests that heat shock using hot water would be a potential strategy to improve nutritional quality of kale sprouts by inducing the accumulation of phytochemicals with antioxidant and anticancer properties.

Euphorbiae Immifusae Sensitizes Apoptosis of TRAIL-resistant Human Gastric Adenocarcinoma AGS Cells (지금초 추출물에 의한 TRAIL 저항성 인체위암세포의 세포사멸 유도)

  • Lee, Jae-Jun; Shin, Dong-Hyuk;Park, Sang-Eun;Kim, Won-Il;Park, Dong-Il;Choi, Yung-Hyun;Hong, Sang-Hoon
    • Journal of Life Science
    • /
    • v.18 no.1
    • /
    • pp.120-128
    • /
    • 2008
  • The death ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/ Apo1L is a cytokine that activates apoptosis through cell surface death receptors. TRAIL has sparked growing interest in oncology due to its reported ability to selectively trigger cancer cell death. Euphorbiae humifusae Wind has been used in traditional Oriental medicine as a folk remedy used for the treatment of cancer. However, the mechanism responsible for the anticancer effects of E. humifusae not clearly understood. Here, we show that treatment with subtoxic doses of water extract of E. humifusae (WEEH) in combination with TRAIL induces apoptosis in TRAIL-resistant human gastric carcinoma AGS cells. Combined treatment with WEEH and TRAIL induced chromatin condensation and sub-G1 phase DNA content. These indicators of apoptosis were correlated with the induction of caspase activity that resulted in the cleavage of poly (ADP-ribose) polymerase. Combined treatment also triggered the loss of mitochondrial membrane potential. Furthermore, co-treatment with WEEH and TRAIL down-regulated the protein levels of the anti-apoptotic proteins such as Bcl-2, Bcl-xL, XIAP and cIAP-1. Although more study will be needed to examine the detailed mechanisms, this combined treatment may offer an attractive strategy for safely treating gastric adenocarcinomas and the results provide important new insights into the possible molecular mechanisms of the anticancer activity of E. humifusae.

Hepatoprotective and Anticancer Activities of Allomyrina dichotoma Larvae (장수풍뎅이 유충의 간보호 효능 및 항암활성)

  • Lee, Ji-Eun;Jo, Da-Eun;Lee, An-Jung;Park, Hye-Kyung;Youn, Kumju;Yun, Eun-Young;Hwang, Jae-Sam;Jun, Mira;Kang, Byoung Heon
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.307-316
    • /
    • 2015
  • Beetle larvae have been used as a traditional medicine to treat various human liver diseases. To prove the liver protective function of Allomyrina dichotoma larvae (ADL), we induced liver damage by the intraperitoneal injection of a hepatotoxic reagent, diethylnitrosamine (DEN), to C3H/HeN male mice and orally administered freeze-dried ADL powder. ADL powder lessened DEN-induced hepatotoxicity considering the reduced signs of acute and chronic hepatotoxicities, such as the ALP level in the blood serum, TUNEL-positive hepatocytes, ductural reactions, steatotic hepatocytes, and collagen deposition of the Masson’s trichrome staining. In addition to hepatoprotection, the anti-cancer activity of ADL has been examined. The ADL powder was extracted with ethanol and then fractionated with hexane, ethyl acetate, and water by a solvent partition technique. The ethyl acetate fraction showed cytotoxicity to various cancer cells through induction of apoptosis and necrosis, as well as the perturbed metabolism of the cancer cell to trigger autophagy. Collectively, ADL contains bioactive substances that can protect hepatocytes from toxic chemicals and trigger cell death in cancer cells. Thus, further purification and analyses of ADL fractions could lead to the identification of novel bioactive compounds.

Growth enhancement and cytotoxicity of Korean mistletoe fractions on human cell lines (한국산 겨우살이 분획물의 면역세포의 생육증진 및 세포독성)

  • Lee, So-Jin;Lee, Mi-Kyoung;Choi, Geun-Pyo;Yu, Chang-Yeon;Roh, Seong-Kyu;Kim, Jong-Dai;Lee, Hyeon-Yong;Lee, Jin-Ha
    • Korean Journal of Medicinal Crop Science
    • /
    • v.11 no.1
    • /
    • pp.62-70
    • /
    • 2003
  • The biological activities on human immune and cancer cell lines of the four kinds of Korean mistletoes (Korean Viscum album, var. coloratum, : Korean Viscum sp. in Quercus acutissima Carr., Korean Viscum sp. in Castanea crenata, Korean Viscum sp. in Betula platyphylla, and Korean Viscum sp. in Salix koreensis) extracts were investigated. The extracts were preparated with ethanol, and fractionated with n-butanol, ethyl acetate, chloroform, hexane, and second distilled water. Cytotoxic potencies of the fractions on human normal lung cell line (HEL 299) showed under 28% in the concentration of 0.5 mg/ml. Growth inhibition effect of the Korean mistletoe extracts on the several human cancer cell lines depends on the concentration of the extracts, and extracting solvent. The hexane, chloroform, and ethyl acetate fractions indicated a strong anticancer activity, but not in aqueous and butanol fractions. Some mistletoe fractions have a different characteristic on the cancer cell lines. Stimulation on the growth of human immuno cell lines(B cell : Raji, T cell: Jurkat) of the extracts were confirmed in the ethyl acetate, chloroform, hexane fractions, but not in aqueous system.