• 제목/요약/키워드: Antibacterial effect, Biofilms

검색결과 16건 처리시간 0.019초

단삼 메탄올 추출물의 구강 병원성 세균에 대한 항균 및 항염증효과 (Antibacterial Activity and Anti-inflammatory Effect of Methanol Extracts of Saliva miltiorrhiza Against Oral Pathogenic Bacteria)

  • 이정혁;임동술;최성숙
    • 생약학회지
    • /
    • 제52권1호
    • /
    • pp.41-48
    • /
    • 2021
  • This research was conducted to investigate the antibacterial and anti-inflammatory effects of MeOH Ex. of Salvia miltiorrhiza (MESM) against oral pathogenic bacteria. Minimum inhibitory concentration (MIC), removal effect of biofilm produced by Streptococcus mutans, effect of gene expression of proinflammatory cytokines and effect of production of proinflammatory cytokine of MESM were tested. MESM showed moderated antibacterial activity against oral pathogenic bacteria. About 89±8% of biofilms produced by S. mutans were removed by MESM at a concentration of 1 mg/mL. Gene expression of IL-1β and TNF-α induced by Porphyromonas gingivalis were 8~9 folds reduced by MESM. Gene expression of IL-8 induced by Fusobacterium nucelatum were 12 folds reduced by MESM. Production of IL-1β, TNF-α and IL-8 were significantly suppressed by MESM. Conclusively, MESM showed potent antibacterial and anti-inflammatory effect against oral pathogenic bacteria.

염화세틸피리디늄 계열 구강세정제의 가철성 교정장치에 대한 세정효과 (Clean effect of a cetylpyridinium chloride-based mouthwash on removable orthodontic appliances)

  • 하다슬;이경희
    • 한국치위생학회지
    • /
    • 제23권4호
    • /
    • pp.227-234
    • /
    • 2023
  • Objectives: Cetylpyridinium chloride CPC-based mouthwashes are well known to have no harmful ingredients in the mouth and can be used for a long time. The purpose of this study was to evaluate the effect of using CPC-based mouthwashes to suppress the biofilm formation and antibiotics for handling orthodontic appliances. Methods: To measure the antibacterial effect, Streptococcus mutans (S. mutans) cultured orthodontic appliances were precipitated in Gargreen and Polident for 5 minutes, incubated at 37℃ for 24 hours(h). In order to measure the biofilm removal effect, the degree of biofilm formation on the orthodontic appliances was stained with a methylene blue and the difference before and after was compared using image J software program (NIH Image J; NIH, Bethesda, MD). Results: The viability of S. mutans according to the concentration showed that Gargreen and Polident inhibited colony formation compared to the control, respectively (p<0.01). The degree of biofilm formation was significantly higher in the control, however both Gargreen and Polident significantly reduced it compared to the before and after condition on removable orthodontic appliances (p<0.01). Conclusions: This study suggests that the use of Gargreen, a cetylpyridinium chloride based oral cleaning cleanser, could be replaced by Polident for antibacterial effect and biofilm formation on removable orthodontic appliances.

Indocyanine Green을 이용한 광열 치료의 다종 우식원성 바이오필름에 대한 효과 (Effect of Photothermal Therapy with Indocyanine Green in Multispecies Biofilm)

  • 김명환;박호원;이주현;서현우;이시영
    • 대한소아치과학회지
    • /
    • 제48권1호
    • /
    • pp.21-30
    • /
    • 2021
  • 이 연구의 목적은 indocyanine green (ICG)과 근적외선 diode 레이저의 사용이 다종 우식원성 바이오필름에 미치는 항균 효과를 조사하는 것이다. Streptococcus mutans, Lactobacillus casei, Candida albicans를 포함하는 다종 바이오필름이 ICG와 808 nm 근적외선 diode 레이저를 사용하여 서로 다른 조사 시간에 따라 처리되었다. Colony-forming unit (CFU)을 측정하였고, 바이오필름의 정성적 평가를 위해 공초점 레이저 주사 현미경(Confocal laser scanning microscopy, CLSM) 관찰을 시행하였다. 또한 광열 치료의 효과를 평가하기 위해 온도 측정이 시행되었다. ICG와 근적외선 diode 레이저를 사용한 군에서 CFU의 감소량이 통계적으로 유의하였으나, L. casei와 C. albicans에서는 시간에 따른 항균 효과의 유의한 차이는 관찰되지 않았다. CLSM 관찰에서도 유사한 세균 감소를 확인할 수 있었다. ICG와 근적외선 diode 레이저를 사용한 군은 ICG 없이 광조사를 시행한 군보다 더 높은 온도 상승을 보였으며, 측정된 온도는 열 치료의 온도 범위와 유사하였다. 결론적으로, ICG와 근적외선 diode 레이저는 다종 우식원성 바이오필름에 항균 효과를 보였다. 우식 예방을 위한 보조 수단으로 사용될 가능성을 가지나, 임상적인 적용을 위해서는 적용 프로토콜에 관한 연구가 필요하다.

항균제를 이용한 알루미늄 표면에 생물막 형성 억제효과 분석 (Study of Effectiveness of Antimicrobial on Restraining Formation of Biofilms on the Surface of Aluminum)

  • 박상준;오영환;조보연;최미연;현민우;정재현;김의용
    • KSBB Journal
    • /
    • 제30권2호
    • /
    • pp.69-76
    • /
    • 2015
  • The antibacterial activity of a antimicrobial (organic synthetic or organic natural material) on the bacteria (Bacillus megaterium, Arthrobacter oxydans, Micrococcus luteus, Methylobacterium aquaticum) detected in the automobiles showed 99.9% bacteria decrease rate within 30 min of being in contact with the tested bacteria culture. The MIC of the organic synthetic material based antimicrobials and the organic natural material based antimicrobial on the bacteria were 31~500 mg/mL and 8~250 mg/mL, respectively. The bacteria and biofilms were formed on the surface of aluminum after 5 ~8 days in the case of addition of the organic synthetic material based antimicrobial to the MIC values for the tested bacteria culture. On the other hand, there was no proliferation of bacteria and formation of biofilms on the surface of aluminum even after 30 days in the case of addition of the organic natural material based antimicrobial to the MIC values for the tested bacteria culture. As a result, the organic natural material based antimicrobial was confirmed to be more excellent effect of inhibition of bacterial proliferation and restraint of biofilms formation than the organic synthetic material based antimicrobial.

Effects of essential oil (blended and single essential oils) on anti-biofilm formation of Salmonella and Escherichia coli

  • Oh, S.Y.;Yun, W.;Lee, J.H.;Lee, C.H.;Kwak, W.K.;Cho, J.H.
    • Journal of Animal Science and Technology
    • /
    • 제59권2호
    • /
    • pp.4.1-4.5
    • /
    • 2017
  • Background: Biofilms were the third-dimensional structure in the solid surface of bacteria. Bacterial biofilms were difficult to control by host defenses and antibiotic therapies. Escherichia coli (E. coli) and Salmonella were popular pathogenic bacteria that live in human and animal intestines. Essential oils are aromatic oily liquids from plant materials and well known for their antibacterial activities. Method: This study was conducted to determine effect of essential oil on anti-biological biofilm formation of E. coli and Salmonella strains in in vitro experiment. Two kinds of bacterial strains were separated from 0.2 g pig feces. Bacterial strains were distributed in 24 plates per treatment and each plates as a replication. The sample was coated with a Bacterial biofilm formation was. Result: Photographic result, Escherichia coli (E. coli) and Salmonella bacteria colony surface were thick smooth surface in control. However, colony surface in blended and single essential oil treatment has shown crack surface layer compared with colony surfaces in control. Conclusion: In conclusion, this study could confirm that essential oils have some interesting effect on anti-biofilm formation of E. coli and Salmonella strains from pig feces.

식중독 미생물의 biofilm 형성에 대한 계피, 정향 및 레몬그래스 정유의 억제 효과 (Inhibitory Effects of Cinnamon, Clove and Lemongrass Essential Oils against Biofilm Formation by Food Poisoning Bacteria)

  • 김형은;김용석
    • 한국식품위생안전성학회지
    • /
    • 제36권5호
    • /
    • pp.430-439
    • /
    • 2021
  • 항균활성이 뛰어난 식물 정유를 이용하여 식품가공 기구 및 용기에 다양하게 사용되는 polyethylene과 stainless steel 표면에 형성된 식중독 6종의 biofilm 형성에 대한 억제 효과를 연구하였다. 식물 정유 20종의 식중독 미생물에 대한 항균활성을 disk diffusion 방법으로 평가한 결과 cinnamon > clove > lemongrass > peppermint > pine needle 순으로 항균활성을 나타냈다. Cinnamon과 clove 정유의 최소억제농도(MIC)와 최소살균농도(MBC)는 각각 0.63-1.25 mg/mL과 1.25-2. mg/mL의 범위를 나타냈으며, lemongrass 정유의 MIC와 MBC는 각각 1.25-2.50 mg/mL과 2.50-5.00 mg/mL로 약간 낮은 항균활성을 나타냈다. 정유 3종의 biofilm 형성 예방효과는 식중독 미생물과 polyethylene 및 stainless steel에 따라 다소 차이가 있었지만, 0.5% 농도의 cinnamon, clove와 lemongrass 정유를 식품접촉 표면에 미리 코팅하였을 때 biofilm 형성에 영향을 주는 것을 확인하였다. 정유의 농도가 증가할수록 모든 식중독 미생물에 대해서 biofilm 형성을 유의적으로 억제하였으며(P<0.05), 0.5% cinnamon과 clove 정유 처리에 의해 L. monocytogenes ATCC 19112와 S. aureus KCCM 11812의 biofilm이 형성되지 않았다. Polyethylene과 stainless steel coupon 표면에 형성된 식중독 미생물의 biofilm의 제거 효과를 측정한 결과, 식중독 미생물의 종류에 따라 차이가 있었지만 정유의 농도가 증가할수록 biofilm 제거 효과는 높아졌으며, 대체로 clove 정유의 biofilm 제거율이 높은 것으로 나타났다. 본 연구를 통하여 0.5%의 cinnamon과 clove 정유는 polyethylene과 stainless steel 표면에 식중독 미생물이 형성하는 biofilm을 예방, 성장 억제 및 제거할 수 있는 천연 소재로 적용이 가능한 것으로 나타났다.

Combination of berberine and ciprofloxacin reduces multi-resistant Salmonella strain biofilm formation by depressing mRNA expressions of luxS, rpoE, and ompR

  • Shi, Chenxi;Li, Minmin;Muhammad, Ishfaq;Ma, Xin;Chang, Yicong;Li, Rui;Li, Changwen;He, Jingshan;Liu, Fangping
    • Journal of Veterinary Science
    • /
    • 제19권6호
    • /
    • pp.808-816
    • /
    • 2018
  • Bacterial biofilms have been demonstrated to be closely related to clinical infections and contribute to drug resistance. Berberine, which is the main component of Coptis chinensis, has been reported to have efficient antibacterial activity. This study aimed to investigate the potential effect of a combination of berberine with ciprofloxacin (CIP) to inhibit Salmonella biofilm formation and its effect on expressions of related genes (rpoE, luxS, and ompR). The fractional inhibitory concentration (FIC) index of the combination of berberine with CIP is 0.75 showing a synergistic antibacterial effect. The biofilm's adhesion rate and growth curve showed that the multi-resistant Salmonella strain had the potential to form a biofilm relative to that of strain CVCC528, and the antibiofilm effects were in a dose-dependent manner. Biofilm microstructures were rarely observed at $1/2{\times}MIC/FIC$ concentrations (MIC, minimal inhibition concentration), and the combination had a stronger antibiofilm effect than each of the antimicrobial agents used alone at $1/4{\times}FIC$ concentration. LuxS, rpoE, and ompR mRNA expressions were significantly repressed (p< 0.01) at $1/2{\times}MIC/FIC$ concentrations, and the berberine and CIP combination repressed mRNA expressions more strongly at the $1/4{\times}FIC$ concentration. The results indicate that the combination of berberine and CIP has a synergistic effect and is effective in inhibiting Salmonella biofilm formation via repression of luxS, rpoE, and ompR mRNA expressions.

Synergistic effect of xylitol and ursolic acid combination on oral biofilms

  • Zou, Yunyun;Lee, Yoon;Huh, Jinyoung;Park, Jeong-Won
    • Restorative Dentistry and Endodontics
    • /
    • 제39권4호
    • /
    • pp.288-295
    • /
    • 2014
  • Objectives: This study was designed to evaluate the synergistic antibacterial effect of xylitol and ursolic acid (UA) against oral biofilms in vitro. Materials and Methods: S. mutans UA 159 (wild type), S. mutans KCOM 1207, KCOM 1128 and S. sobrinus ATCC 33478 were used. The susceptibility of S. mutans to UA and xylitol was evaluated using a broth microdilution method. Based on the results, combined susceptibility was evaluated using optimal inhibitory combinations (OIC), optimal bactericidal combinations (OBC), and fractional inhibitory concentrations (FIC). The anti-biofilm activity of xylitol and UA on Streptococcus spp. was evaluated by growing cells in 24-well polystyrene microtiter plates for the biofilm assay. Significant mean differences among experimental groups were determined by Fisher's Least Significant Difference (p < 0.05). Results: The synergistic interactions between xylitol and UA were observed against all tested strains, showing the FICs < 1. The combined treatment of xylitol and UA inhibited the biofilm formation significantly and also prevented pH decline to critical value of 5.5 effectively. The biofilm disassembly was substantially influenced by different age of biofilm when exposed to the combined treatment of xylitol and UA. Comparing to the single strain, relatively higher concentration of xylitol and UA was needed for inhibiting and disassembling biofilm formed by a mixed culture of S. mutans 159 and S. sobrinus 33478. Conclusions: This study demonstrated that xylitol and UA, synergistic inhibitors, can be a potential agent for enhancing the antimicrobial and anti-biofilm efficacy against S. mutans and S. sobrinus in the oral environment.

Antibiofilm and Anti-β-Lactamase Activities of Burdock Root Extract and Chlorogenic Acid against Klebsiella pneumoniae

  • Rajasekharan, Satish Kumar;Ramesh, Samiraj;Satish, Ann Susan;Lee, Jintae
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권3호
    • /
    • pp.542-551
    • /
    • 2017
  • Small phytochemicals have been successfully adopted as antibacterial chemotherapies and are being increasingly viewed as potential antibiofilm agents. Some of these molecules are known to repress biofilm and toxin production by certain bacterial and yeast pathogens, but information is lacking with regard to the genes allied with biofilm formation. The present study was performed to investigate the inhibitory effect of burdock root extract (BRE) and of chlorogenic acid (CGA; a component of BRE) on clinical isolates of Klebsiella pneumoniae. BRE and CGA exhibited significant antibiofilm activity against K. pneumoniae without inflicting any harm to its planktonic counterparts. In vitro assays supported the ${\beta}$-lactamase inhibitory effect of CGA and BRE while in silico docking showed that CGA bound strongly with the active sites of sulfhydryl-variable-1 ${\beta}$-lactamase. Furthermore, the mRNA transcript levels of two biofilm-associated genes (type 3 fimbriae mrkD and trehalose-6-phosphate hydrolase treC) were significantly downregulated in CGA- and BRE-treated samples. In addition, CGA inhibited biofilm formation by Escherichia coli and Candida albicans without affecting their planktonic cell growth. These findings show that BRE and its component CGA have potential use in antibiofilm strategies against persistent K. pneumoniae infections.

Bactericidal and wound disinfection efficacy of nanostructured titania

  • Azad, Abdul-Majeed;Aboelzahab, Asem;Goel, Vijay
    • Advances in materials Research
    • /
    • 제1권4호
    • /
    • pp.311-347
    • /
    • 2012
  • Infections are caused due to the infiltration of tissue or organ space by infectious bacterial agents, among which Staphylococcus aureus bacteria are clinically most relevant. While current treatment modalities are in general quite effective, several bacterial strains exhibit high resistance to them, leading to complications and additional surgeries, thereby increasing the patient morbidity rates. Titanium dioxide is a celebrated photoactive material and has been utilized extensively in antibacterial functions, making it a leading infection mitigating agent. In view of the property amelioration in materials via nanofication, free-standing titania nanofibers (pure and nominally doped) and nanocoatings (on Ti and Ti6Al4V implants) were fabricated and evaluated to assess their efficacy to mitigate the viability and growth of S. aureus upon brief (30 s) activation by a portable hand-held infrared laser. In order to gauge the effect of exposure and its correlation with the antibacterial activities, both isolated (only titania substrate) and simultaneous (substrate submerged in the bacterial suspension) activations were performed. The bactericidal efficacy of the IR-activated $TiO_2$ nanocoatings was also tested against E. coli biofilms. Toxicity study was conducted to assess any potential harm to the tissue cells in the presence of photoactivated materials. These investigations showed that the photoactivated titania nanofibers caused greater than 97% bacterial necrosis of S. aureus. In the case of titania-coated Ti-implant surrogates, the bactericidal efficacy exceeded 90% in the case of pre-activation and was 100% in the case of simultaneous-activation. In addition to their high bactericidal efficacy against S. aureus, the benignity of titania nanofibers and nanocoatings towards tissue cells during in-vivo exposure was also demonstrated, making them safe for use in implant devices.