DOI QR코드

DOI QR Code

Antibiofilm and Anti-β-Lactamase Activities of Burdock Root Extract and Chlorogenic Acid against Klebsiella pneumoniae

  • Received : 2016.09.23
  • Accepted : 2016.12.06
  • Published : 2017.03.28

Abstract

Small phytochemicals have been successfully adopted as antibacterial chemotherapies and are being increasingly viewed as potential antibiofilm agents. Some of these molecules are known to repress biofilm and toxin production by certain bacterial and yeast pathogens, but information is lacking with regard to the genes allied with biofilm formation. The present study was performed to investigate the inhibitory effect of burdock root extract (BRE) and of chlorogenic acid (CGA; a component of BRE) on clinical isolates of Klebsiella pneumoniae. BRE and CGA exhibited significant antibiofilm activity against K. pneumoniae without inflicting any harm to its planktonic counterparts. In vitro assays supported the ${\beta}$-lactamase inhibitory effect of CGA and BRE while in silico docking showed that CGA bound strongly with the active sites of sulfhydryl-variable-1 ${\beta}$-lactamase. Furthermore, the mRNA transcript levels of two biofilm-associated genes (type 3 fimbriae mrkD and trehalose-6-phosphate hydrolase treC) were significantly downregulated in CGA- and BRE-treated samples. In addition, CGA inhibited biofilm formation by Escherichia coli and Candida albicans without affecting their planktonic cell growth. These findings show that BRE and its component CGA have potential use in antibiofilm strategies against persistent K. pneumoniae infections.

Keywords

References

  1. Podschun R, Ullmann U. 1998. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev. 11: 589-603.
  2. Dhingra KR. 2008. A case of complicated urinary tract infection: Klebsiella pneumoniae emphysematous cystitis presenting as abdominal pain in the emergency department. West. J. Emerg. Med. 9: 171-173.
  3. Murphy CN, Clegg S. 2012. Klebsiella pneumoniae and type 3 fimbriae: nosocomial infection, regulation and biofilm formation. Future Microbiol. 7: 991-1002. https://doi.org/10.2217/fmb.12.74
  4. Balestrino D, Ghigo JM, Charbonnel N, Haagensen JA, Forestier C. 2008. The characterization of functions involved in the establishment and maturation of Klebsiella pneumoniae in vitro biofilm reveals dual roles for surface exopolysaccharides. Environ. Microbiol. 10: 685-701. https://doi.org/10.1111/j.1462-2920.2007.01491.x
  5. Lewis K. 2001. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 45: 999-1007. https://doi.org/10.1128/AAC.45.4.999-1007.2001
  6. Romero L, Lopez L, Rodriguez-Bano J, Ramon Hernandez J, Martinez-Martinez L, Pascual A. 2005. Long-term study of the frequency of Escherichia coli and Klebsiella pneumoniae isolates producing extended-spectrum beta-lactamases. Clin. Microbiol. Infect. 11: 625-631. https://doi.org/10.1111/j.1469-0691.2005.01194.x
  7. Paterson DL, Hujer KM, Hujer AM, Yeiser B, Bonomo MD, Rice LB, et al. 2003. Extended-spectrum ${\beta}$-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: dominance and widespread prevalence of SHVand CTX-M-type ${\beta}$-lactamases. Antimicrob. Agents Chemother. 47: 3554-3560. https://doi.org/10.1128/AAC.47.11.3554-3560.2003
  8. Li Z, Jiang HD. 2009. The effect of biofilms on the production of beta-lactamases in Pseudomonas aeruginosa. Zhonghua Jie He He Hu Xi Za Zhi 32: 613-616.
  9. Heydari S, Eftekhar F. 2015. Biofilm formation and ${\beta}$-lactamase production in burn isolates of Pseudomonas aeruginosa. Jundishapur J. Microbiol. 8: e15514.
  10. Rajasekharan SK, Ramesh S. 2016. Inhibitory effect of quercetin on ${\beta}$-lactam-resistant urinary tract pathogens. Minerva Biotecnol. 28: 228-232.
  11. Hennequin C, Forestier C. 2007. Influence of capsule and extended-spectrum beta-lactamases encoding plasmids upon Klebsiella pneumoniae adhesion. Res. Microbiol. 158: 339-347. https://doi.org/10.1016/j.resmic.2007.02.005
  12. Schroll C, Barken KB, Krogfelt KA, Struve C. 2010. Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation. BMC Microbiol. 10: 179. https://doi.org/10.1186/1471-2180-10-179
  13. Di Martino P, Cafferini N, Joly B, Darfeuille-Michaud A. 2003. Klebsiella pneumoniae type 3 pili facilitate adherence and biofilm formation on abiotic surfaces. Res. Microbiol. 154: 9-16. https://doi.org/10.1016/S0923-2508(02)00004-9
  14. Boddicker JD, Anderson RA, Jagnow J, Clegg S. 2006. Signature-tagged mutagenesis of Klebsiella pneumoniae to identify genes that influence biofilm formation on extracellular matrix material. Infect. Immun. 74: 4590-4597. https://doi.org/10.1128/IAI.00129-06
  15. Jagnow J, Clegg S. 2003. Klebsiella pneumoniae MrkDmediated biofilm formation on extracellular matrix- and collagen-coated surfaces. Microbiology 149: 2397-2405. https://doi.org/10.1099/mic.0.26434-0
  16. Chan YS, Cheng LN, Wu JH, Chan E, Kwan YW, Lee SM, et al. 2011. A review of the pharmacological effects of Arctium lappa (burdock). Inflammopharmacology 19: 245-254. https://doi.org/10.1007/s10787-010-0062-4
  17. Edison AS, Uma Maheswari K, Brindha P. 2012. Protective role of Arctium lappa Linn. against arsenic trioxide using Silybum marianum Linn. as standard drug. Asian J. Chem. 26: 3749-3753.
  18. Rajasekharan SK, Ramesh S, Bakkiyaraj D, Elangomathavan R, Kamalanathan C. 2015. Burdock root extracts limit quorum-sensing-controlled phenotypes and biofilm architecture in major urinary tract pathogens. Urolithiasis 43: 29-40. https://doi.org/10.1007/s00240-014-0720-x
  19. Bakkiyaraj D, Nandhini JR, Malathy B, Pandian SK. 2013. The anti-biofilm potential of pomegranate (Punica granatum L.) extract against human bacterial and fungal pathogens. Biofouling 29: 929-937. https://doi.org/10.1080/08927014.2013.820825
  20. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, et al. 1997. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of n-acylhomoserine lactones. Microbiology 143: 3703-3711. https://doi.org/10.1099/00221287-143-12-3703
  21. Morohoshi T, Shiono T, Takidouchi K, Kato M, Kato N, Kato J, Ikeda T. 2007. Inhibition of quorum sensing in Serratia marcescens AS-1 by synthetic analogs of n-acylhomoserine lactone. Appl. Environ. Microbiol. 73: 6339-6344. https://doi.org/10.1128/AEM.00593-07
  22. Bakkiyaraj D, Sivasankar C, Pandian SK. 2012. Inhibition of quorum sensing regulated biofilm formation in Serratia marcescens causing nosocomial infections. Bioorg. Med. Chem. Lett. 22: 3089-3094. https://doi.org/10.1016/j.bmcl.2012.03.063
  23. Mouton RP, Bongaerts GP, van Gestel M. 1979. Comparison of activity and beta-lactamase stability of cefotaxime with those of six other cephalosporins. Antimicrob. Agents Chemother. 16: 757-760. https://doi.org/10.1128/AAC.16.6.757
  24. Perret CJ. 1954. Iodometric assay of penicillinase. Nature 174: 1012-1013. https://doi.org/10.1038/1741012a0
  25. Yoon MY, Lee KM, Park Y, Yoon SS. 2011. Contribution of cell elongation to the biofilm formation of Pseudomonas aeruginosa during anaerobic respiration. PLoS One 6: e16105. https://doi.org/10.1371/journal.pone.0016105
  26. Thenmozhi R, Nithyanand P, Rathna J, Pandian SK. 2009. Antibiofilm activity of coral-associated bacteria against different clinical M serotypes of Streptococcus pyogenes. FEMS Immunol. Med. Microbiol. 57: 284-294. https://doi.org/10.1111/j.1574-695X.2009.00613.x
  27. Drawz SM, Bonomo RA. 2010. Three decades of ${\beta}$-lactamase inhibitors. Clin. Microbiol. Rev. 23: 160-201. https://doi.org/10.1128/CMR.00037-09
  28. Rawat D, Nair D. 2010. Extended-spectrum ${\beta}$-lactamases in Gram Negative Bacteria. J. Glob. Infect. Dis. 2: 263-274. https://doi.org/10.4103/0974-777X.68531
  29. Baig MH, Balaramnavar VM, Wadhwa G, Khan AU. 2015. Homology modeling and virtual screening of inhibitors against TEM- and SHV-type-resistant mutants: a multilayer filtering approach. Biotechnol. Appl. Biochem. 62: 669-680. https://doi.org/10.1002/bab.1370
  30. Baig MH, Shakil S, Khan AU. 2012. Homology modeling and docking study of recent SHV type ${\beta}$-lactamses with traditional and novel inhibitors: an in silico approach to combat problem of multiple drug resistance in various infections. Med. Chem. Res. 21: 2229-2237. https://doi.org/10.1007/s00044-011-9736-8
  31. Solano C, Echeverz M, Lasa I. 2014. Biofilm dispersion and quorum sensing. Curr. Opin. Microbiol. 18: 96-104. https://doi.org/10.1016/j.mib.2014.02.008
  32. Nadell CD, Xavier JB, Levin SA, Foster KR. 2008. The evolution of quorum sensing in bacterial biofilms. PLoS Biol. 6: e14. https://doi.org/10.1371/journal.pbio.0060014
  33. Balestrino D, Haagensen JA, Rich C, Forestier C. 2005. Characterization of type 2 quorum sensing in Klebsiella pneumoniae and relationship with biofilm formation. J. Bacteriol. 187: 2870-2880. https://doi.org/10.1128/JB.187.8.2870-2880.2005
  34. De Araujo C, Balestrino D, Roth L, Charbonnel N, Forestier C. 2010. Quorum sensing affects biofilm formation through lipopolysaccharide synthesis in Klebsiella pneumoniae. Res. Microbiol. 161: 595-603. https://doi.org/10.1016/j.resmic.2010.05.014
  35. Goncalves Mdos S, Delattre C, Balestrino D, Charbonnel N, Elboutachfaiti R, Wadouachi A, et al. 2014. Anti-biofilm activity: a function of Klebsiella pneumoniae capsular polysaccharide. PLoS One 9: e99995. https://doi.org/10.1371/journal.pone.0099995
  36. Holetz FB, Pessini GL, Sanches NR, Cortez DA, Nakamura CV, Filho BP. 2002. Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Mem. Inst. Oswaldo Cruz 97: 1027-1031. https://doi.org/10.1590/S0074-02762002000700017
  37. Pereira J, Bergamo D, Pereira J, Franca Sde C, Pietro R, Silva-Sousa Y. 2005. Antimicrobial activity of Arctium lappa constituents against microorganisms commonly found in endodontic infections. Braz. Dent. J. 16: 192-196. https://doi.org/10.1590/S0103-64402005000300004
  38. Lou Z, Wang H, Zhu S, Ma C, Wang Z. 2011. Antibacterial activity and mechanism of action of chlorogenic acid. J. Food Sci. 76: M398-403. https://doi.org/10.1111/j.1750-3841.2011.02213.x
  39. Luis A, Silva F, Sousa S, Duarte AP, Domingues F. 2014. Antistaphylococcal and biofilm inhibitory activities of gallic, caffeic, and chlorogenic acids. Biofouling 30: 69-79. https://doi.org/10.1080/08927014.2013.845878
  40. Karunanidhi A, Thomas R, van Belkum A, Neela V. 2013. In vitro antibacterial and antibiofilm activities of chlorogenic acid against clinical isolates of Stenotrophomonas maltophilia including the trimethoprim/sulfamethoxazole resistant strain. Biomed. Res. Int. 2013: 392058.

Cited by

  1. Himatanthus drasticus Leaves: Chemical Characterization and Evaluation of Their Antimicrobial, Antibiofilm, Antiproliferative Activities vol.22, pp.6, 2017, https://doi.org/10.3390/molecules22060910
  2. Chlorogenic Acid Improves the Regorafenib Effects in Human Hepatocellular Carcinoma Cells vol.19, pp.5, 2017, https://doi.org/10.3390/ijms19051518
  3. Current anti-biofilm strategies and potential of antioxidants in biofilm control vol.16, pp.11, 2017, https://doi.org/10.1080/14787210.2018.1535898
  4. Antibiofilm and Antivirulence Efficacies of Flavonoids and Curcumin Against Acinetobacter baumannii vol.10, pp.None, 2017, https://doi.org/10.3389/fmicb.2019.00990
  5. The Search for Natural Inhibitors of Biofilm Formation and the Activity of the Autoinductor C6-AHL in Klebsiella pneumoniae ATCC 13884 vol.9, pp.2, 2017, https://doi.org/10.3390/biom9020049
  6. Inhibitory Effects of Honokiol and Magnolol on Biofilm Formation by Acinetobacter baumannii vol.24, pp.2, 2017, https://doi.org/10.1007/s12257-019-0006-9
  7. Considerations and Caveats in Combating ESKAPE Pathogens against Nosocomial Infections vol.7, pp.1, 2017, https://doi.org/10.1002/advs.201901872
  8. The effect of subinhibitory concentrations of satureja spp. essential oils on the biofilm formation and urease activity of Klebsiella pneumoniae vol.1, pp.73, 2020, https://doi.org/10.29252/jmp.1.73.63
  9. Terpinen-4-ol as an Antibacterial and Antibiofilm Agent against Staphylococcus aureus vol.21, pp.12, 2017, https://doi.org/10.3390/ijms21124531
  10. Modulation of Gut Microbiota through Dietary Phytochemicals as a Novel Anti-infective Strategy vol.17, pp.4, 2017, https://doi.org/10.2174/1570163816666191107124214
  11. Quercetin Inhibits Biofilm Formation by Decreasing the Production of EPS and Altering the Composition of EPS in Staphylococcus epidermidis vol.12, pp.None, 2017, https://doi.org/10.3389/fmicb.2021.631058
  12. Plant-derived nanotherapeutic systems to counter the overgrowing threat of resistant microbes and biofilms vol.179, pp.None, 2017, https://doi.org/10.1016/j.addr.2021.114019
  13. Quinic acid: a potential antibiofilm agent against clinical resistant Pseudomonas aeruginosa vol.16, pp.1, 2021, https://doi.org/10.1186/s13020-021-00481-8