• Title/Summary/Keyword: Antibacterial agent

Search Result 335, Processing Time 0.022 seconds

Polysaccharide-based superhydrophilic coatings with antibacterial and anti-inflammatory agent-delivering capabilities for ophthalmic applications

  • Park, Sohyeon;Park, Joohee;Heo, Jiwoong;Lee, Sang-Eun;Shin, Jong-Wook;Chang, Minwook;Hong, Jinkee
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.229-237
    • /
    • 2018
  • Medical silicone tubes are generally used as implants for the treatment of nasolacrimal duct stenosis. However, side effects such as allergic reactions and bacterial infections have been reported following the silicone tube insertion, which cause surgical failure. These drawbacks can be overcome by modifying the silicone tube surface using a functional coating. Here, we report a biocompatible and superhydrophilic surface coating based on a polysaccharide multilayer nanofilm, which can load and release antibacterial and anti-inflammatory agents. The nanofilm is composed of carboxymethylcellulose (CMC) and chitosan (CHI), and fabricated by layer-by-layer (LbL) assembly. The LbL-assembled CMC/CHI multilayer films exhibited superhydrophilic properties, owing to the rough and porous structure obtained by a crosslinking process. The surface coated with the superhydrophilic CMC/CHI multilayer film initially exhibited antibacterial activity by preventing the adhesion of bacteria, followed by further enhanced antibacterial effects upon releasing the loaded antibacterial agent. In addition, inflammatory cytokine assays demonstrated the ability of the coating to deliver anti-inflammatory agents. The versatile nanocoating endows the surface with anti-adhesion and drug-delivery capabilities, with potential applications in the biomedical field. Therefore, we attempted to coat the nanofilm on the surface of an ophthalmic silicone tube to produce a multifunctional tube suitable for patient-specific treatment.

Antibacterial Activity of the Phaeophyta Ecklonia stolonifera on Methicillin-resistant Staphylococcus aureus

  • Eom, Sung-Hwan;Kang, Min-Seung;Kim, Young-Mog
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • In an effort to discover an alternative therapeutic agent against methicillin-resistant Staphylococcus aureus (MRSA), several medicinal plants and seaweeds were evaluated for its antibacterial activity against MRSA. A methanolic extract of the Phaeophyta Ecklonia stolonifera exhibited significant antibacterial activity against MRSA. To perform more detailed investigation on antibacterial activity, the methanol extract of E. stolonifera was further fractionated with organic solvents such as hexane, dimethylchloride, ethyl acetate, and n-butanol. Among them, the hexane fraction showed the strongest antibacterial activity against MRSA strains with MIC from 500 to $600 {\mu}g/mL$. The fraction also exhibited a bactericidal activity against MRSA, indicating that E. stolonifera contains a bactericidal substance against MRSA.

Conformational Analysis of Some Antibacterial Agent 4-Aminodiphenyl Sulfones

  • Lee, Sung-Hee;Chung, Uoo-Tae;Kang, Young-Kee
    • Archives of Pharmacal Research
    • /
    • v.13 no.1
    • /
    • pp.43-50
    • /
    • 1990
  • Conformational free energy calculations using an empirical potential function (ECEPP/2) and hydration shell model were carried out on the four-4-aminodiphenyl sulfone analogues of 4, 4'-diamino-2' methyldiphenyl sulfone, 4, 2', 4-triaminodiphenyl sulfone, 4, 4'-diaminodiphenyl sulfone, and 4-aminodiphenyl sulfone as antibacterial agents on Mycobacterium lufu. The conformational energy was minimized from starting conformations which included possible combinations of torsion angles in the molecule. The conformational entropy change of each conformation was computed using a harmonic approximation. To understand the hydration effect on the conformation of the molecule in aqueous solution, the contributions of water-accessible volume and the hydration free energy of each group or atom in the lowest-free-energy conformation was calculated and compared each other. From comparison of the computed lowest-free-energy conformations of four analogues with their antibacterial activities, it is known that the conformation and the hydrophobicity of sulfonyl group and its adjacent carbon atom in each compound are the essential factors to show the strong antibacterial activity.

  • PDF

Antibiotics Effect of Synthetic Polyacrylic Acid Containing Sulfamethazine (Sulfamethazine에 의한 폴리아크릴산의 항균 효과)

  • Yoon, Cheol-Hun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.180-185
    • /
    • 2001
  • Antibiotics polymer prepared by chemical bonding and simple blending of antibacterial into polymers have attracted much interest because of their long-lasting and antibacterial activity. Antibiotics polymer can significantly reduce losses associated with dissolution, photolytic decomposition and volatillization. Further more, increased efficiency safety and selectivity are additional benefits which may be realized. In this study, Antibiotics polymer was synthesized by chemical reaction of polyacrylic acid with sulfamethazine by N,N'-dicyclohexylcarbodiimide(DCC) method. Antibacterial susceptibility was determined against Streptococcus pyrogenes[gram(+)] and Esherichia coli.[gram(-)] using a standardized disc test. As a result, the synthetic antibiotics polymer exhibited the broad susceptibilty against Streptococcus pyrogenes and Esherichia coli. Especially, the antibiotic effect of antibacterial polymer against Gram negative(Esherichia coli) was much stronger than that against Gram positive(Streptococcus pyrogenes).

Synthesis of Oxazolidinone Phosphonate Derivatives, Part II

  • Hwang, Jae-Min;Yeom, Sung-Ho;Jung, Kang-Yeoun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.5
    • /
    • pp.821-826
    • /
    • 2007
  • Several oxazolidinones, a new class of synthetic antibacterial agents, have shown biological activity against multidrug-resistant gram positive organisms such as staphylococci, streptococci, and enterococci. Previous results of our studies with benzoxazolidinone phosphonate derivatives have demonstrated very low antibacterial activity. In the course of our studies directed towards the discovery of noble antibacterial agents, we have synthesized several new derivatives of oxazolidinone phosphonates prepared efficiently from commercially available amino acids. These compounds are tested for in vitro antibacterial activity and one of the compounds showed promising results allowing us to pursue further studies.

Antibacterial activity of Chamaecyparis obtuse Extract and Profile of Antimicrobial Agents Resistance for Methicillin-Resistant Staphylococcus aureus

  • Jong Hwa Yum
    • Biomedical Science Letters
    • /
    • v.30 no.1
    • /
    • pp.32-35
    • /
    • 2024
  • In vitro antimicrobial activities of hot water extracts of Chamaecyparis obtuse, for methicillin-resistant Staphylococcus aureus (MRSA) was compared to commonly used conventional antimicrobial agents. All MRSA was susceptible to linezolid or vancomycin, but also to erythromycin. MIC range and MIC90 to erythromycin, clindamycin, levofloxacin, tetracycline for MRSA were each 4 ㎍/mL, 2 ~ >128 ㎍/mL, ≤0.06 ~ >128 ㎍/mL, 0.25 ~ >128 ㎍/mL, 0.25~64 ㎍/mL and 4 ㎍/mL, .128 ㎍/mL, >128 ㎍/mL, >128 ㎍/mL, 64 ㎍/mL. The hot water extracts of leaf of C. obtuse had the lowest MIC range, MIC50, and MIC90 (0.125 µL/mL) for the MRSA tested, and it was possible more potent than various conventional antimicrobial agents. Screen antibacterial drug candidate with high antibacterial activity such as derivatives of C. obtuse leaf extract such as terpinen-4-ol or using combined therapy with commercialized antibacterial agents will likely be helpful in treating refractory MRSA infections.

A Novel Approach for Sericin-Conjugated Silver Nanoparticle Synthesis and Their Potential as Microbicide Candidates

  • Lv, Xiaowen;Wang, Huanru;Su, Airong;Chu, Ying
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1367-1375
    • /
    • 2018
  • Silver nanoparticles have been widely applied for biomedical areas owing to their potent antiviral and antibacterial activities. Synthesis of silver nanoparticles using biomacromolecules is more efficient, environment-friendly, and cost-saving compared with the traditional approach. In this paper, a novel approach was developed to establish a reaction system with $Ag^+-BH4^--sericin$ to synthesize silver nanoparticles conjugated to sericin (AgNPs-Sericin). Sericin could be as a good dispersant and stabilizing agent, which is able to modify nanoscaled AgNPs, the average diameter of which was only $3.78{\pm}1.14nm$ prepared in a 0.3 mg/ml sericin solution. The characterizations of the AgNPs-Sericin were determined by FTIR, thermogravimetry, and XRD analyses. The results showed that the synthesized AgNPs conjugated with sericin as organic phase. Via SAED and XRD analysis, we showed that these AgNPs formed polycrystalline powder with a face-centered cubic structure of bulk metals. Moreover, we investigated the antiviral and antibacterial activities of AgNPs-Sericin, and the results showed that AgNPs-Sericin exhibited potent anti-HIV-1 activity against CCR5-tropic and CXCR4-tropic strains, but no significant cytotoxicity was found toward human genital epithelial cells compared with free silver ions, which are accepted as a commonly used potent antimicrobial agent. Moreover, its antibacterial activity was determined via flow cytometry. The results showed that AgNPs-Sericin could suppress gram-negative (E. coli) and gram-positive (S. aureus) bacteria, but more was potent for the gram-negative one. We concluded that our AgNPs-Sericin could be a potential candidate as a microbicide or antimicrobial agent to prevent sexually transmitted infections.

Synergistic Antibacterial Activity of Ecklonia cava Extract against Anti-biotic Resistant Enterococcus faecalis (항생제 내성 Enterococcus faecalis에 대한 감태(Ecklonia cava) 추출물의 항균 시너지 효과)

  • Kim, Seung-Yong;Kim, Young-Mog;Kim, Eunjung;Lee, Myung-Suk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.1
    • /
    • pp.51-57
    • /
    • 2015
  • With continuing demand for the development of new, effective and safe therapies, an investigation was carried out to test the efficacy of an antibacterial agent derived from marine edible seaweed. The methanolic extract of Ecklonia cava from marine edible seaweed evinced potential antibacterial activity against Enterococcus faecalis. Among five solvent-soluble fractions of E. cava methanolic extract, the ethyl acetate soluble extract (EtOAc) exhibited the strongest antibacterial activity, with a MIC value of $128{\mu}g/mL $ against E. faecalis strains. Furthermore, a synergistic antibacterial effect between an antibiotic and the EtOAc fraction was assessed using fractional inhibitory concentration (FIC) indices. A combination of ciprofloxacin and the EtOAc fraction resulted in a ${\sum}FIC_{min}$ range of 0.188 and ${\sum}FIC_{max}$ of 0.508 to 563, suggesting that the ciprofloxacin-EtOAc fraction of E. cava combination resulted in an antibacterial synergy effect against E. faecalis.

Preparation of Antibacterial Agent using Alginate and Its Antibacterial Effect (알긴산염을 이용한 항균제의 제조 및 항균효과)

  • 이학성;서정호
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.63-67
    • /
    • 2002
  • Silver-alginate and copper-alginate were prepared with Na-alginate extracted from marine brown algae(Sargassum fluitans). The antibacterial effect of Ag-alginate or Cu-alginate against Staphylococcus aureus and Escherichia coli was carried out by measuring optical density of liquid culture at 600 nm. The cell growth of Staphylococcus aureus and Escherichia coli was very active at pH 7, and was inhibited by adding Ag-alginate with more than 0.006 wt.% of silver content. The antibacterial effect of Ag-alginate against S. aureus and E. coli was better than that of Cu-alginate at the same metal concentration. The cell growth of S. aureus was less inhibitory than E. coli at the same concentration of Ag-alginate. The cell growth of S. aureus and E. coli was also influenced by the characteristics of counter ion of silver.

Expression and Antibacterial Activity of a Bombus ignitus Apidaecin in Baculovirus-Infected Insect Cells

  • Lee, Kwang-Sik;Je, Yeon-Ho;Jin, Byung-Rae;Sohn, Hung-Dae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.24 no.1
    • /
    • pp.37-40
    • /
    • 2012
  • The apidaecins are highly active against Gram-negative bacteria. Here, we show the expression and antibacterial activity of the bumblebee, Bombus ignitus, apidaecin. We PCR-amplified 51 bp of the active domain sequence of the B. ignitus apidaecin gene and expressed the recombinant B. ignitus apidaecin active domain in baculovirus-infected insect cells. The recombinant B. ignitus apidaecin active domain shows bactericidal activity against Gram-negative bacteria, including Pseudomonas tolaasii, a serious pathogen in cultivated mushrooms, but not Gram-positive bacteria. This result suggests that the active domain of the B. ignitus apidaecin is a potential antibacterial agent for the control of bacterial brown blotch diseases.