• Title/Summary/Keyword: Anti-reflection

Search Result 255, Processing Time 0.029 seconds

Tribological and Optical Characteristics of Silica Coating for Anti-reflection Coating of Solar Cell (태양전지의 반사방지막을 위한 Silica 코팅의 트라이볼로지 및 광학적 특성 평가)

  • Kim, Hae-Jin;Kim, Dae-Eun
    • Transactions of the Society of Information Storage Systems
    • /
    • v.6 no.2
    • /
    • pp.68-73
    • /
    • 2010
  • The interest in acquiring high efficiency solar cells has been steadily increasing due to various advantages such as low-cost installation, pollution free and everlasting energy generation. In order to raise the cell efficiency, there has been a lot of effort to develop effective anti-reflection coatings. In this work, the main objective was to investigate the effects of particle size and annealing temperature of silica anti-reflection coatings to maximize the cell efficiency as well as reliability. It was shown that the light transmittance could be increased by a few percent over a certain range of wavelength using the silica coating. Also, the tribological properties of the coating could be improved through the annealing process, which led to better reliability of the coating.

Impact of Anti-Reflective Coating on Silicon Solar Cell and Glass Substrate : A Brief Review

  • Zahid, Muhammad Aleem;Khokhar, Muhammad Quddamah;Cho, Eun-Chel;Cho, Young Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2020
  • The most important factor in enhancing the performance of an optical device is to minimize reflection and increasing transmittance of light for a broad wavelength range. The choice of appropriate coating material is crucial in decreasing reflection losses at the substrate. The purpose of this review is to highlight anti-reflection coating (ARC) materials that can be applied to silicon solar cell and glass substrate for minimizing reflection losses. The optical and electrical behavior of ARC on a substrate is highly dependent on thickness and refractive index (RI) of ARC films that are being deposited on it. The coating techniques and performance of single and multi-layered ARC films after coated on a substrate in a wide range of wavelength spectrum will be studied in the paper.

Fabrication of Hydrophobic Anti-Reflection Coating Film by Using Sol-gel Method (Sol-gel 법을 이용한 내오염 반사방지 코팅막 제조)

  • Kim, Jung-Yup;Lee, Ji-Sun;Hwang, Jonghee;Lim, Tae-Young;Lee, Mi-Jai;Hyun, Soong-Keun;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.689-693
    • /
    • 2014
  • Anti-reflection coating films have used to increase the transmittance of displays and enhance the efficiency of solar cells. Hydrophobic anti-reflection coating films were fabricated on a glass substrate by sol-gel method. To fabricate an anti-reflection film with a high transmittance, poly ethylene glycol (PEG) was added to tetraethyl orthosilicate (TEOS) solution. The content of PEG was changed from 1 to 4 wt% in order to control the morphology, thickness, and refractive index of the $SiO_2$ thin films. The reflectance and transmittance of both sides of the coated thin film fabricated with PEG 4 wt% solution were 0.3% and 99.4% at 500 nm wavelength. The refractive index and thickness of the thin film were n = 1.29 and d = 105 nm. Fluoro alkyl silane (FAS) was used for hydrophobic treatment on the surface of the anti-reflection thin film. The contact angle was increased from $13.2^{\circ}$ to $113.7^{\circ}$ after hydrophobic treatment.

Surface Texturing and Anti-Reflection Coating of Multi-crystalline Silicon Solar Cell (다결정 실리콘 태양전지의 표면 텍스쳐링 및 반사방지막의 영향)

  • Jun, Seong-Uk;Lim, Kyung-Muk;Choi, Sock-Hwan;Hong, Yung-Myung;Cho, Kyung-Mox
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.3
    • /
    • pp.138-143
    • /
    • 2007
  • The effects of texturing and anti-reflection coating on the reflection properties of multi-crystalline silicon solar cell have been investigated. The chemical solutions of alkaline and acidic etching solutions were used for texturing at the surface of multi-crystalline Si wafer. Experiments were performed with various temperature and time conditions in order to determine the optimized etching condition. Alkaline etching solution was found inadequate to the texturing of multi-crystalline Si due to its high reflectance of about 25%. The reflectance of Si wafer texturing with acidic etching solution showed a very low reflectance about 10%, which was attributed to the formation of homogeneous. Also, deposition of ITO anti-reflection coating reduced the reflectance of multi-crystalline si etched with acidic solution($HF+HNO_3$) to 2.6%.

Anti-Reflection Coating Application of SixOy-SixNy Stacked-Layer Fabricated by Reactive Sputtering (반응성 스퍼터링으로 제작된 SixOy-SixNy 적층구조의 반사방지 코팅 응용)

  • Gim, Tzang-Jo;Lee, Boong-Joo;Shina, Paik-Kyun
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.341-346
    • /
    • 2010
  • In this paper, anti-reflection coating was investigated for decreasing the reflection in visible range of 400~650 [nm] through four staked layers of $Si_xO_y$ and $Si_xN_y$ thin films prepared by reactive sputtering method. Si single crystal of 6 [inch] diameter was used as a sputtering target. Ar and $O_2$ gases were used as sputtering gases for reactive sputtering for the $Si_xO_y$ thin film, and Ar and $N_2$ gases were used for reactive sputtering for the $Si_xN_y$ thin film. DC pulse power of 1900 [W] was used for the reactive sputtering. Refractive index and deposition rate were 1.50 and 2.3 [nm/sec] for the $Si_xO_y$, and 1.94 and 1.8 [nm/sec] for the $Si_xN_y$ thin film, respectively. Considering the simulation of the four layer anti-reflection coating structure with the above mentioned films, the $Si_xO_y-Si_xN_y$ stacked four-layer structure was prepared. The reflection measurement result for that structure showed that a "W" shaped anti-reflection was obtained successfully with a reflection of 1.7 [%] at 550 [nm] region and a reflection of 1 [%] at 400~650 [nm] range.

Design of Anti-Reflection Coating thin film for Multi-Type Optical Connector (광커넥터 Multi-Type을 위한 무반사 코팅 박막 설계)

  • Ki, Hyun-Chul;Kim, Hwe-Jong;Jo, Jea-Chul;Hong, Kyung-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.80-81
    • /
    • 2008
  • In this paper, we have designed the Anti-Reflection (AR) coating for 850, 1310 nm(multi type) and 1310, 1550 nm(multi type) wavelength ranges on the ferrule facet of special optical connector. The reflectance of the AR coated ferrule facet is designed under 5% for 850, 1310 nm(multi type) and 1310, 1550 nm (multi type). The average return loss of the AR coated ferrule facet is 47.1 dB.

  • PDF

Soft Mold Imprinting Fabrication of Anti-reflection Film using Self-Organized Nanostructure Polymer Surfaces Irradiated by Ion Beams (이온빔 처리된 폴리머 표면의 자가나노구조화를 이용한 반사방지 필름 제조용 소프트 몰드 임프린팅 연구)

  • Lee, Seunghun;Byeon, Eun-Yeon;Choi, Juyeon;Jung, Sunghoon;Yu, Byeong-Gil;Kim, Do-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.480-485
    • /
    • 2017
  • Soft mold imprinting method that uses nanostructured polymer mold was investigated for anti-reflection film fabrication. The nanostructured soft mold was polyethylene terephthalate(PET) irradiated by oxygen ion beams. The collisional energy transfer between oxygen ion and the polymer surface induced cross-linking and scission reactions, resulting in self-organized nanostructures with regular patterns of the wavenumber of $5{\mu}m^{-1}$. Post processes including ultra-violet curable resin coating and delamination fabricated anti-reflection films. The imprinted resin surface also showed the consistent wavenumber, $5{\mu}m^{-1}$. Pristine PET, oxygen ion beam treated PET, and imprinted replica sample showed total transmittance of 91.04, 93.25, and 93.57-93.88%, respectively.

Preparation and characterization of TiO2 anti-reflective layer for textured Si (100)

  • Choe, Jin-U;Nam, Sang-Hun;Jo, Sang-Jin;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.322-322
    • /
    • 2010
  • Recently, anti-reflective films (AR) are one of the most studied parts of a solar cell since these films improve the efficiency of photovoltaic devices. Also, anti-reflection films on the textured silicon solar cells reduce the amount of reflection of the incident light, which improves the device performance due to light trapping of incident light into the cell. Therefore, we preformed two step processes to get textured Si (100) substrate in this experiment. Pyramid size of textured silicon had approximately $2{\sim}9\;{\mu}m$. A well-textured silicon surface can lower the reflectance to 10%. For more reduced reflection, TiO2 anti-reflection films on the textured silicon were deposited at $600^{\circ}C$ using titanium tetra-isopropoxide (TTIP) as a precursor by metal-organic chemical vapor deposition (MOCVD), and the deposited TiO2 layers were then treated by annealing for 2 h in air at 600 and $1000^{\circ}C$, respectively. In this process, the treated samples by annealing showed anatase and rutile phases, respectively. The thickness of TiO2 films was about $75{\pm}5\;nm$. The reflectance at specific wavelength can be reduced to 3% in optimum layer.

  • PDF

Fabrication of Anti-Reflection Thin Film by Using Screen Printing Method (Screen Printing법을 이용한 반사방지막 제조)

  • Choi, Chang-Sik;Nam, Jeong-Sic;Lee, Ji-Sun;Jeon, Dae-Woo;Lee, Young-jin;Bae, Hyun;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.28 no.12
    • /
    • pp.714-718
    • /
    • 2018
  • Anti-reflection thin films are fabricated on glass substrates using the screen printing method. Tetra ethyl silicate(TEOS) and methyl tri methoxy silane(MTMS) are used as starting materials and buthyl carbitol acetate(BCA) and buthyl cellusolve(BC) are mixed to improve the viscosity of the solution. Anti-reflection thin films are fabricated according to the number of the screen mesh and the characteristics improve as the mesh size increases. The transmittance and reflectance of the coated thin film using 325 mesh are about 94 % and 0.43 % in the visible wavelength. The thickness and refractive index of the AR thin film are 107 nm and n = 1.26, respectively.