태양전지의 반사방지막을 위한 Silica 코팅의 트라이볼로지 및 광학적 특성 평가

Tribological and Optical Characteristics of Silica Coating for Anti-reflection Coating of Solar Cell

김해진*, 김대은

Hae Jin Kim, Dae-Eun Kim

(2010년 9월 10일 접수; 2010년 9월 17일 심사완료; 2010년 9월 19일 게재확정)

Abstract

The interest in acquiring high efficiency solar cells has been steadily increasing due to various advantages such as low-cost installation, pollution free and everlasting energy generation. In order to raise the cell efficiency, there has been a lot of effort to develop effective anti-reflection coatings. In this work, the main objective was to investigate the effects of particle size and annealing temperature of silica anti-reflection coatings to maximize the cell efficiency as well as reliability. It was shown that the light transmittance could be increased by a few percent over a certain range of wavelength using the silica coating. Also, the tribological properties of the coating could be improved through the annealing process, which led to better reliability of the coating.

Key Words: Solar Cell efficiency, anti-reflection coating, silica coating, wear, transmittance, reliability.

1. 서론

1.1 태양전지 반사방지막의 개요

환경 오염 문제와 더불어 화학 에너지의 고 갈로 인하여 태양전지는 지난 수 십 년 동안 차 세대 대체 에너지로서 많은 연구가 진행되어왔 다. 태양전지는 무한으로 에너지 공급이 가능하 며, 공해를 발생하지 않아 청정 에너지로서 가장 적합하다는 평가를 받아왔다. 특히 최근에는 태 양전지의 고효율화, 반영구적인 수명에 대한 연 구가 활발하게 진행되고 있다[1].

고효율화에 대한 일환으로 태양전지의 반사방지막에 대한 활발하게 연구가 진행되고 있는데 [2], 이는 입사된 빛의 수~수십%가 전하를 생성시키지 못하고 다시 반사되기 때문이다. 이는 태양전지의 효율을 높이는 데에 큰 장벽으로 작용하여 이에 대한 더 깊은 연구가 요구되고 있는 실정이다.

† 연세대학교 기계공학과 E-mail: kimde@vonsei.ac.kr

TEL: (02)2123-2822 Fax: (02)365-0491

* 연세대학교 기계공학과

실리콘 태양전지의 경우, ZnO, TiN, MgF_2 또는 DLC 와 같은 다양한 반사방지막 코팅이 적용되고 있으며, glass type 의 태양전지는 silica 나노 입자를 통해 나노 구조를 형성하여 반사방지막으로서의 그 타당성이 검토되고 있다 [3-6].

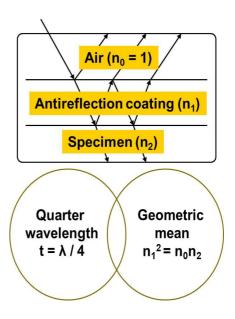


Fig. 1 Requirements of anti-reflection coating

1.2 다공성 silica 반사방지막

반사방지막으로서의 조건을 만족하기 위해서는 시편과 반사방지막의 굴절률의 관계에 있어서 Fig. 1 에 나타난 바와 같이 Quarter wavelength 와 기하평균의 두 가지의 조건이 모두 성립되어야 한다[7]. Fig. 1 에서 n은 굴절률, λ 는 빛의 파장 그리고 t는 반사방지막의 두께를 나타낸다.

일반적으로 제조 방법이나 조건에 따라 유리의 굴절률은 다양하나 1.5 로 통상적으로 알려져 있다. 즉, 기하 평균의 조건을 만족하기 위해서는 1.5^{1/2}=1.23 의 굴절률로 코팅이 되어야 한다. 그러나 굴절률 1.23 의 값은 전 영역의 파장대에서 그 어느 고체 물질의 굴절률보다 작은 값이기 때문에 Diamond-like carbon (DLC)와 같이널리 사용되는 반사방지막을 유리 type 태양전지에 적용하기에는 한계가 있다. 따라서, 반사방지막을 유리에 적용하기 위해서는 silica 와 같은 open structure 를 이용하여야 한다는 결론이나온다.

일반적으로 sol-gel 에 의한 silica 나노입자의합성은 Tetramethyl orthosilicate (TEOS, reagent grade, 98%)를 그 출발 물질로 하고, 산이나 염기를 촉매로 하는 축합 반응의 과정을 거친다[8]. Silica를 합성하는 과정에서 발생하는 온도, 농도 또는 aging 시간 등과 같은 여러 가지 변수에 따라 silica 입자의 특성이 변하게 된다. 산을 촉매로하여 (pH≥2.5) 반응을 일으키는 경우, 일정치 않은 가지 모양의 체인 구조가 생성되며, 기공의부피가 감소하여 표면 점착력이 증가하게 된다. 반면에 염기를 촉매로 하는 경우 (pH≤7.5) 구 형태로 확장된 입자구조의 형태를 띄며, 이로 인하여 기공의 부피가 증가하고 표면 점착력이 비교적 낮아지게 된다[9].

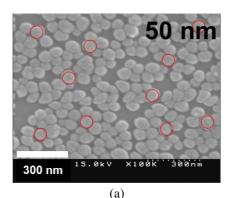
본 실험에서는 염기를 촉매로 하여 합성되는 다 공성 silica 입자의 크기와 annealing 온도에 따른 마모와 광학적 특성을 알아보고자 하였다. 이를 위하여 촉매의 양을 달리하여 수십에서 수백 nm 크기의 silica 입자를 합성하였다.

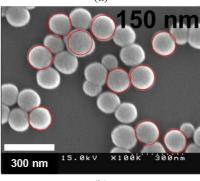
2. 실험 방법

2.1 Sol-gel 법에 의한 silica 합성 및 코팅 방법

본 실험에서는 TEOS 와 촉매로 사용된 NH₄OH (ACS reagent, 30% NH₃ basis)의 몰 비율을

1:1, 1:2, 1:3 으로 하였으며 합성된 용액은 상온에 서 특정 시간 동안 aging 과정을 거치도록 하였 다. 그 다음으로 70℃로 유지하여 촉매인 NH₄OH 를 제거하였다. 콜로이드 상태의 silica 용액을 고 르게 분산시키기 위하여 stirrer 를 이용하여 200 RPM 에서 1 시간 동안 섞은 후, 15 분동안 4kHz 의 초음파에 노출시켰다. 시편은 유리 태양전지 에 일반적으로 사용되는 Fluorine Tin Oxide (FTO) 가 코팅된 전도성 유리를 1.5cm(W)×3.5cm(L)× 0.2cm(t)의 크기로 자른 후, 아세톤, 에탄올, 증류 수(HPLC grade) 순으로 세척하였다. 본 연구에서 사용된 전도성 유리는 FTO 코팅의 질과 균등성 이 모두 다르기 때문에 각각의 투과율이 모두 다 르게 나타났으며, 평균적으로 가시광선 영역에서 85%정도의 투과율을 나타내었다. 모두 본 실험 에서는 코팅 방법으로 dip coating 을 이용하였으며, dipping time 과 들어가고 나오는 속도를 각각 20 초, 0.5mm/s 로 일정하게 유지하였다. 그 후 불필 요한 용매를 제거하기 위하여 annealing 온도를 500℃에서 700℃까지 다양한 온도로 변화를 주어 그에 따른 특성을 파악하고자 하였다.


2.2 Silica 코팅의 마모 거동 및 광학적 특성


반사방지막은 태양전지의 최외각층에 존재하여 외부 환경에 직접적으로 노출되는 층으로써, 오랜 시간이 지나도 신뢰성이 확보되어야 한다. 이를 위한 해결 방법을 제안하기 앞서, silica 코 팅의 마모 특성을 규명하고자 하였다[10,11].

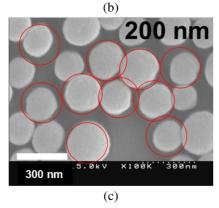
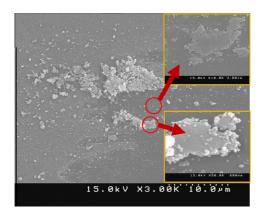

본 실험에서는 Fig. 2 에 나타낸 recipro-cating type 의 micro-tribotester 를 이용하였다. Si₃N₄ 볼을 이용하여 0.5gf 의 하중을 가하였으며, 2mm 의 stroke 으로 1200cycle 동안 마모 실험을 진행하였 다. 힘 센서를 통하여 마찰력 데이터를 획득하고, 간단한 계산을 통하여 마찰계수를 얻을 수 있었 다. 본 마모 실험은 26℃, 35%RH 에서 일정하게 유지될 수 있도록 환경 챔버 내에서 모든 실험 을 진행하였다. 마모 실험 후에는 Scanning Electron Microscopy (SEM)을 통하여 마모된 track 의 형상을 보다 정밀하게 분석하고자 하였다. 마 지막으로, Silica 입자의 크기나 annealing 온도에 따른 코팅의 광학적 특성을 알아보기 위하여 UV-VIS spectrophotometer (Cary, Varian 5000)을 이 용하여 특정 파장 영역에서 투과율을 측정하여 비교하였다.

Fig. 2 Micro-tribotester

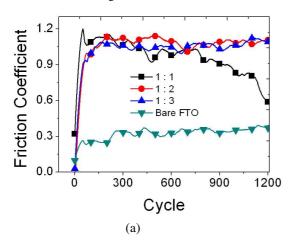
Fig. 3 SEM image of (a) 50nm sized silica synthesized by solution that has TEOS: NH₄OH molar ratio of 1:1, (b) 150nm sized silica synthesized by solution that has TEOS: NH₄OH molar ratio of 1:2 and (c) 200nm sized silica synthesized by solution that has TEOS: NH₄OH molar ratio of 1:3

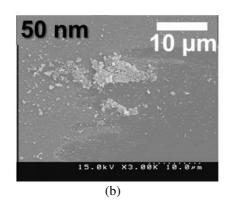
3. 실험 결과 및 고찰

3.1 Sol-gel 합성에 의한 Silica 입자 분석


Fig. 3 은 NH₄OH 의 몰 비율에 따라 크기가서로 다른 silica 입자가 코팅된 FTO glass 를 SEM 으로 촬영한 사진이다. SEM 사진을 토대로 10개의 silica 입자를 임의로 추출하여 크기를 측정하였으며, 이를 평균을 내어 나타내었다. 결과를보면 알 수 있듯이, 촉매의 몰 비율이 증가할수록 silica 입자의 크기가 커지는 것을 알 수 있다. 또한, 입자의 크기가 커질수록 FTO glass에 코팅된 silica 입자 밀도가 낮아진다는 것을 알 수 있었다. 이는 FTO glass 표면 점착력이 일정 이상크기의 silica 입자에 대하여 그 질량을 이기지못하여 침전 현상이 일어나 코팅이 잘 되지 않았다고 판단된다.

3.2 입자 크기에 따른 Silica 코팅의 마모 거동


Fig. 4 의 SEM 사진에서 볼 수 있듯이 50nm 크기의 silica 가 코팅된 시편의 마모 track 을 살펴보면, 대부분의 silica 입자는 다른 부분으로 이동되었으며, 마모 track 끝 부분에서는 이동된 silica 입자가 쌓여 시간이 지남에 따라 Si₃N₄ 볼에 의해 분쇄되는 결과를 나타내었다. 이러한 현상은 입자의 크기와는 관계 없이 공통적으로 비슷한 마모현상을 나타내었다.


Fig. 5 에는 크기가 50nm, 150nm 그리고 200nm 인 silica 입자 구조로 코팅된 경우에 대하여 각각의 마찰계수와 그에 따른 마모 track 사진을 나타내었다. 입자의 크기가 150nm 그리고 200nm 인 경우 초반에 마찰계수가 급격히 증가하고, 1200cycles 동안 큰 변화가 일어나지 않는 현상을 나타내었다.

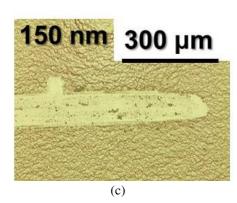

반면에 50nm 크기의 silica 인 경우, 급격히 증가한 후 400cycles 가 지난 뒤에는 빠르게 FTO glass 의 마찰계수로 회복되는 현상을 나타내었다. 이는 400cycles 이후, 기존에 마모 track 에 있던 코팅된 silica 입자의 대부분이 전도성 유리에서 파손되지 않은 채 마모 track 양 옆의 부분으로 단순히 이동하였기 때문이라고 판단된다. 이는 50nm 크기의 마모 track 의 경우는 비교적 깔끔한 반면, 150nm 와 200nm 의 마모 track은 잔여물이 많이 남아있음으로 확인할 수 있다.

Fig. 4 SEM image of end of the silica coating wear track after sliding test

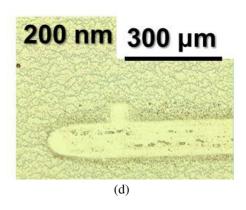
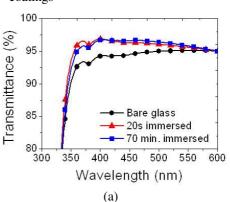
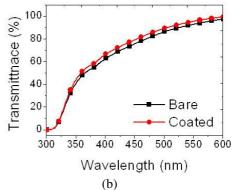
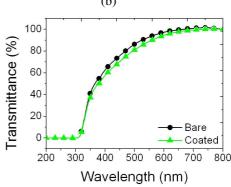
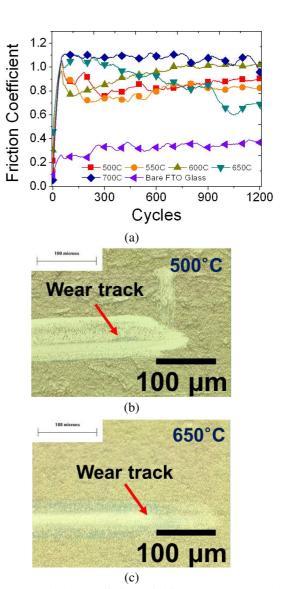





Fig. 5 (a) Friction coefficient variation of silica coatings and wear track image of (b) 50nm (c) 150 nm and (d) 200 nm particle size silica coatings

Fig. 6 Transmittance of (a) 50 nm (b) 150 nm (c) 200 nm particle size silica coatings

(c)


3.3 입자 크기에 따른 Silica 코팅의 광학적 거동

입자 크기에 따라 투과율이 어떻게 달라지는 지에 대한 결과를 Fig. 6 에 나타내었다. Fig. 6 (a) 에서는 dipping time 을 20 초와 70 분으로 달리했 음에도 불구하고 투과율에 대한 결과는 크게 달 라지지 않았음을 알 수 있다. 또한, 평균적인 silica 입자의 크기가 50nm 일 경우 최대로 2.5% 의 투과율 상승이 있음을 알 수 있다. Fig. 6 (c)와 같이 입자의 크기가 200nm 인 경우 코팅이 되지 않은 전도성 유리에 비하여 코팅된 유리가 투과 율의 감소를 나타내었는데, 이는 코팅된 입자 밀 도가 낮아 반사방지막의 역할을 하기보다는 오 히려 빛을 분산시켜 투과율을 감소시키는 scattering 효과로 인해 나타낸 결과로 추측된다. Fig. 6 (b) 에서는 150nm 크기의 silica 입자가 코 팅된 것이 약 4%의 상승으로 투과율 측면에서 가장 좋은 효과를 나타내었다.

3.4 Annealing 온도에 따른 Silica 코팅의 마모 거동 및 광학적 특성

앞선 실험에서 나타내었듯이, 적절한 크기의다공성 silica 입자 구조를 통하여 투과율이 상승된다는 알 수 있었다. 그러나 유리의 점착력이비교적 낮아 silica 입자가 쉽게 표면으로부터 떨어지거나 입자가 파손되는 것을 또한 마모 실험을 통하여 알 수 있었다.

이에, 외부 환경에 대한 silica 입자의 신뢰성 을 높이는 방안으로 annealing 온도를 500℃에서 700℃까지 각각 50℃씩 변화를 주어 실험을 진 행하였다. 이 외에 다른 변수를 통제하기 위하여 TEOS, NH₄OH 와 EtOH 의 비율은 1:2:30 으로 유 지하였다. Fig. 7 에 다양한 온도에서의 마찰계수 와 500℃와 650℃에서 각각의 마모 track 의 사진 을 나타내었다. 온도에 관계없이 모든 시편에 대 하여 마찰계수는 1200cycles 동안 0.8~1.0 정도로 일정하게 유지된 반면, 온도에 따른 마모 track 은 500℃와 650℃에서 비교적 다르게 나타내었 음을 알 수 있다. 즉, 온도가 증가할수록 마모 정도가 낮아짐을 알 수 있는데 이는 silica 입자 와 전도성 FTO 유리와의 접착력이 증가하여 나 타난 현상으로 볼 수 있다. 마지막으로, annealing 에 따른 투과율 상승 효과가 제거될 수 있음을 고려하여 투과율을 측정하였다. Fig. 8 에서 볼 수 있듯이, annealing 온도에 따른 투과율의 변화에 대하여 실험을 진행하였으며, 500℃의 경우 약 3%의 증가를 보였음을 알 수 있다.

Fig. 7 (a) Friction coefficient of silica coating annealed at various temperatures and wear track of silica coating annealed at (b) 500 °C (c) 650 °C

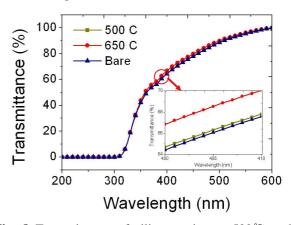


Fig. 8 Transmittance of silica coating at $500\,^{\circ}\mathrm{C}$ and $650\,^{\circ}\mathrm{C}$

4. 결론

본 연구에서는 silica 입자의 크기에 따른 마모 특성과 광학적 특성에 대하여 알아보았다. 또한, silica 와 전도성 유리와의 비교적 낮은 접착력을 보완하기 위하여 annealing 온도를 조절하고 마모 특성과 광학적 특성을 알아보고자 하였다.

NH₄OH 인 촉매의 양을 달리하여 50nm, 150nm 그리고 200nm 크기의 silica 입자를 합성 하였고, 이를 dip coating 방법을 이용하여 FTO 전도성 유리 위에 코팅을 하였다. 입자의 크기가 50nm 인 경우, 코팅이 빠르게 파손되어 전도성 유리 시편의 마찰계수로 수렴하는 경향을 보였 으며, 크기가 150nm 와 200nm 인 경우는 일정한 마찰계수를 보였다. 또한, 입자의 크기가 50nm 와 150nm 의 경우 각각 2.5%, 4%의 투과율 증가 를 보이는 반면, 200nm 인 경우 비교적 큰 질량 으로 인해 표면에 고르게 코팅되지 않아 반사방 지막으로서의 기능보다는 빛을 분산시키는 scattering 효과를 나타낸 것으로 보인다.

다음으로 코팅의 신뢰성을 확보하기 위하여 annealing 온도를 증가시켜 접착력을 증가시키고 자 하였다. 마모 실험 결과 650℃의 경우에는 500℃ 경우와 비교하여 마모가 적게 나타났음을 알 수 있었다. 이는 적절한 annealing 온도에 의하여 접착력을 증가시켜 silica 입자의 안정성을 확보할 수 있음을 알 수 있다. 광학적 특성 또한 500℃ 또는 650℃의 경우 모두 투과율의 증가를 나타내었으므로, 반사방지막으로서의 안정성과 그 기능을 모두 확보했다고 할 수 있다.

나아가 silica 반사방지막을 태양전지에 직접 접목시켜 효율변화에 직접적으로 어떠한 변화를 끼치는지 규명해보아야 할 것으로 판단된다.

후 기

이 논문은 2010 년도 정부(교육과학기술부)의 재원으로 한국연구재단의 지원을 받아 수행된 연 구임 (No. 2010-0018289)

참고문헌

[1] M.A. Green, 2001, "Thin-film solar cells: review of materials, technologies and commercial status", Journal of Material Science, Vol.18, pp.S15-S19

- [2] A.Gombert, W.Glaubitt, K.Rose, J.Dreibholz, B.Blasi et al., 2000, "Antireflective transparent covers for solar devices", Journal of solar energy, Vol.68, No.4, pp.357-360
- [3] J.Zhao, M. A. Green, 1991, "Optimized antireflection coatings for high-efficiency silicon solar cells", IEEE transactions on electron devices, Vol.38, No.8, pp.1925-1934
- [4] B.Liu, W.Yeh, 2010, "Antireflective surface fabricated from colloidal silica nanoparticles", Colloids and surfaces A, Vol.356, pp.145-149
- [5] P.Nostell, A.Roos, B.Karlsson, 1999, "Optical and mechanical properties of sol-gel antireflective films for solar energy applications", Thin solid films, Vol.351, pp.170-175
- [6] M.C. Bautista, A. Morales, 2003, "Silica antireflective films on glass produced by the sol–gel method", Solar energy materials & solar cells, Vol.80, pp.217-225
- [7] D. Chen, 2001 "Anti-reflection (AR) coatings made by sol-gel processes: A review", Solar energy materials & solar cells, Vol.68, pp.313-336
- [8] A. Vincent, S. Babu, E.Brinley, A. Karakoti, S. Deshpande et al., 2007, "Role of catalyst on refractive index tunability of porous silica antireflective coatings by sol-gel technique", Journal of physical chemistry, Vol.111, pp.8291-8298
- [9] I.M. Thomas, 1992, "Method for the preparation of porous silica antireflection coatings varying in refractive index from 1.22 to 1.44", Applied optics, Vol.31, No.28, pp.6145-6149
- [10] H. J. Kim, D. E. Kim, 2009 "Manufacturing-Nanoscale Friction: A Review", International journal of precision engineering, Vol.10, pp.141-151
- [11] J. E. Lee, H. J. Kim, D. E. Kim, 2010 "Assessment of adhesion between thin film and silicon based on a scratch test", Journal of mechanical science and technology, Vol.24, pp.97-101