• Title/Summary/Keyword: Anti-melanogenesis

Search Result 178, Processing Time 0.027 seconds

Enhancement of Ganodermanondiol and Anti-melanogenesis Effect of Ganoderma lucidum by Rhus verniciflua Extract Supplementation (옻나무 추출물 첨가에 따른 영지버섯의 가나도마난디올 생합성 증대 및 멜라닌 생성 저해효과)

  • Jeong, Yong Un;Kim, Hong Il;Kim, Jong Hyun;Park, Young Jin
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.4
    • /
    • pp.365-371
    • /
    • 2017
  • This study was carried out to investigate the effect of lacquer tree (Rhus verniciflua) extract on ganodermanondiol (GN), tyrosinase and melanin biosynthesis inhibitor, biosynthesis in Ganoderma lucidum mycelia. In HPLC analysis, GN contents were significantly increased in G. lucidum mycelial extracts supplemented with of 1, 5, 10, and 15% lacquer tree extracts (LTE). In addition, G. lucidum mycelial extracts supplemented with LTEs which had no cytotoxicity activity against B16F10 cells, significantly inhibited melanogenesis in B16F10 cells. GN biosynthesis was facilitated by LTE. Taken together, we propose that G. lucidum mycelial extracts supplemented with LTE can be used as an effective ingredient of skin care products in the future.

Anti-melanogenic Activity of Extracts from Carex pumila Thunb. Inhabiting Along the Nakdong River (Republic of Korea)

  • Mirissa Hewage Dumindu Kavinda;Mi-Hwa Lee;Chang-Hee Kang;Yung Hyun Choi;Gi-Young Kim
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.118-118
    • /
    • 2022
  • Carex pumila Thunb. is a plant native to East Asia, Australia, and New Zealand. However, its effect on skin melanogenesis has not been investigated. In the present study, we evaluated its anti-melanogenic properties using B16F10 melanoma cells and zebrafish larvae in the presence or absence of α-melanocyte stimulating hormone (α-MSH). In this study we revealed that concentrations below 50 µg/mL did not induce any cytotoxicity in B16F10 melanoma cells and cardiotoxicity in zebrafish larvae. However, 50 µg/mL treatment significantly inhibited α-MSH-induced extracellular (from 181.24% α 0.62% to 105.15% α 0.31%) and intracellular melanin contents (from 119.8% α 1.2% to 53.4% α 1.7%) as well as intracellular tyrosinase activity (from 143.9% α 4.2% to 103.7% α 1.4%) in B16F10 melanoma cells. At 25 µg/mL and 50 µg/mL concentrations, it could significantly inhibit α-MSH induced hyperpigmentation in zebrafish larvae (from 100% α 2.3% to 60.7% α 1.3% and 47.5% α 1.9% respectively). Additionally, the extract suppressed α-MSH-induced cAMP-CREB-MITF signaling pathway and consequently inhibited tyrosinase expression in B16F10 melanoma cells. In conclusion, our results indicate that this plant extract could suppress the cAMP-CREB-MITF axis which consequently inhibits tyrosinase mediated melanogenesis.

  • PDF

In vitro Modulation of Proliferation and Melanization of B16/F10 Melanoma Cells by Quercetin (Quercetin이 B16/F10 멜라닌세포의 중식 및 멜라닌화에 미치는 영향)

  • 천현자;백승화;우원홍;황상구;김춘관;김춘관
    • YAKHAK HOEJI
    • /
    • v.46 no.1
    • /
    • pp.75-80
    • /
    • 2002
  • Quercetin is one of the bioflavonoid compounds and has multiple biological effects such as antioxidant and effective anti-inflammatory agent. Melanin has an important role in protecting human skin from the damaging effects of ultra-violet W) radiation. We studied the effect of quercetin on proliferation of B16/F10 melanoma cells. After 48h treatment of cells with quercetin, the cells exhibited a dose-dependent inhibition in their proliferation without apoptosis. Therefore, the decrease in cell numbers may be due to cell growth arrest, not due to cell death by cytotoxicity. We also investigated the effect of quercetin on melanogenesis of this cells. B16/F10 melanoma cells were grown for 48h in the presence of 0.01~50$\mu\textrm{g}$/ml quercetin and the total melanin contents were measured. Quercetin stimulated melanization of the cells in low concentrations (0.01~20$\mu\textrm{g}$/ml), whereas it inhibited melanization in high concentrations (30~50$\mu\textrm{g}$/ml). It was observed that quercetin differently regulates melanogenesis of B16/F10 melanoma cells dependent on its concentrations.

Inhibitory Effect on the Melanogenesis of Capsosiphon fulvescens (매생이 추출물의 멜라닌생성 억제효과)

  • Mun, Yeun-Ja;Yoo, Hyun-Ju;Lee, Kyung-Eun;Kim, Jin-Hui;Pyo, Hyeong-Bae;Woo, Won-Hong
    • YAKHAK HOEJI
    • /
    • v.49 no.5
    • /
    • pp.375-379
    • /
    • 2005
  • The green marine algae, Capsosiphon fulvescens is one of the important economic seaweeds cultured in Korea. In this study, we investigated the effects of Capsosiphon fulvescens on melanogenesis using B16 cells. Our results showed that Capsosiphon fulvescens significantly inhibits melanin synthesis and it reduces the activity of tyrosinase, the rate-limiting melanogenic enzyme. Western Blot analysis using anti-tyrosinase antibody revealed that Capsosiphon fulvescens ($10\~40\;{\mu}g/ml$ decreased tyrosinase protein levels. Cell proliferation was dose-dependently inhibited by 10, 20 and 40 ${\mu}g/ml$ Cap­sosiphon fulvescens, without cytotoxicity and morphological change. These results suggest that the depigmenting effect of Capsosiphon fulvescens is correlated with the suppression of tyrosinase activity and protein level, which are key enzymes for melanogenesis.

Dehydroglyasperin D Suppresses Melanin Synthesis through MITF Degradation in Melanocytes

  • Baek, Eun Ji;Ha, Yu-Bin;Kim, Ji Hye;Lee, Ki Won;Lim, Soon Sung;Kang, Nam Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.982-988
    • /
    • 2022
  • Licorice (Glycyrrhiza) has been used as preventive and therapeutic material for hyperpigmentation disorders. Previously, we isolated noble compounds including dehydroglyasperin C (DGC), dehydroglyasperin D (DGD) and isoangustone A (IAA) from licorice hexane/ethanol extracts. However, their anti-melanogenic effects and underlying molecular mechanisms are unknown. The present study compared effects of DGC, DGD and IAA on pigmentation in melan-a melanocytes and human epidermal melanocytes (HEMn). DGD exerted the most excellent anti-melanogenic effect, followed by DGC and IAA at non-cytotoxic concentrations. In addition, DGD significantly inhibited tyrosinase activity in vitro cell-free system and cell system. Western blot result showed that DGD decreased expression of microphthalmia-associated transcription factor (MITF), tyrosinase and tyrosinase-related protein-1 (TRP-1) in melan-a cells and HEMn cells. DGD induced phosphorylation of MITF, ERK and Akt signal pathway promoting MITF degradation system. However, DGD did not influence p38 and cAMP-dependent protein kinase (PKA)/CREB signal pathway in melan-a cells. These result indicated that DGD inhibited melanogenesis not only direct regulation of tyrosinase but also modulating intracellular signaling related with MITF level. Collectively, these results suggested a protective role for DGD against melanogenesis.

Anti-Oxidative, Anti-Inflammatory, and Anti-Melanogenic Activities of Endlicheria Anomala Extract (Endlicheria anomala (Nees) Mez 추출물의 항산화, 항염증 및 미백 활성)

  • Jin, Kyong-Suk;Lee, Ji Young;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.4
    • /
    • pp.433-441
    • /
    • 2013
  • In this study, the anti-oxidative, anti-inflammatory, anti-melanogenic activities of Endlicheria anomala (Nees) Mez methanol extract (EAME) were evaluated by use of in vitro assays and cell culture model systems. The results revealed that EAME scavenges various radicals such as 1,1-diphenyl-2-picryl hydrazyl hydrogen peroxide induced reactive oxygen species, and lipopolysaccharide induced nitric oxide. Furthermore, EAME induced the expression of anti-oxidative enzymes such as heme oxygenase 1, thioredoxin reductase 1, NAD(P)H dehydrogenase 1, and their upstream transcription factor, nuclear factor-E2-related factor 2. Moreover, EAME inhibited in vitro DOPA oxidation and 3-isobutyl-1-methylxanthine induced melanogenesis in B16F10 cells. Its anti-melanogenic activity will have originated from the inhibition of tyrosinase enzyme activity and melanogenesis related protein expression. Taken together, these results provide the important new insight that E. anomala possesses various biological activities such as anti-oxidative, anti-inflammatory, and anti-melanogenic. Therefore, it might be utilized as a promising material in the fields of nutraceuticals and cosmetics.

Methylanthranilate, a Food Fragrance Attenuates Skin Pigmentation through Downregulation of Melanogenic Enzymes by cAMP Suppression

  • Heui-Jin Park;Kyuri Kim;Eun-Young Lee;Prima F. Hillman;Sang-Jip Nam;Kyung-Min Lim
    • Biomolecules & Therapeutics
    • /
    • v.32 no.2
    • /
    • pp.231-239
    • /
    • 2024
  • Methyl anthranilate (MA) is a botanical fragrance used in food flavoring with unexplored potential in anti-pigment cosmetics. MA dose-dependently reduced melanin content without affecting cell viability, inhibited dendrite elongation and melanosome transfer in the co-culture system of human melanoma cells (MNT-1) and human keratinocyte cell line (HaCaT), and downregulated melanogenic genes, including tyrosinase, tyrosinase-related protein 1 and 2 (TRP-1, TRP-2). Additionally, MA decreased cyclic adenosine monophosphate (cAMP) production and exhibited a significant anti-pigmentary effect in MelanodermTM. These results suggest that MA is a promising anti-pigmentary agent for replacing or complementing existing anti-pigmentary cosmetics.

Antioxidant and Anti-Melanogenic Activities of Hyssopus officinalis Extracts (히솝 추출물의 항산화 효과 및 멜라닌 생성 저해효과)

  • Shin, Seo Yeon;Kim, Ha Neul;Kang, Se Won;Cho, Hong Suk;Kim, Eun Ji;Park, Sun Hwa;Park, Kyung Mok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.2
    • /
    • pp.195-201
    • /
    • 2016
  • Hyssopus officinalis is a herbaceous plant of the genus Hyssopus. Due to its properties as an antiseptic, cough reliever and expectorant, it is commonly used as an aromatic herb and medicinal plant. This study was performed to investigate the anti-oxidative and anti-melanogenic properties of Hyssopus officinalis extracts (HE) using in vitro assays and cell culture systems. As a result, HE showed higher DPPH and ABTS radicals scavenging activity in a dose-dependent manner. Also, HE inhibited the prodution of intracellular ROS and melanin contents in B16F10 melanoma cell as well as tyrosinase activity. We also found that HE inhibit mRNA expression of MITF, tyrosinase and TRP-2 gene. These findings suggest that HE may be beneficial for preventing oxidative damage and melanogenesis of skin.

Anti-melanogenic effects of Hordeum vulgare L. barely sprout extract in murine B16F10 melanoma cells

  • Choi, Jeong-Hwa;Jung, Jong-Gi;Kim, Jung-Eun;Bang, Mi-Ae
    • Journal of Nutrition and Health
    • /
    • v.52 no.2
    • /
    • pp.168-175
    • /
    • 2019
  • Purpose: Barely sprout is a well-known oriental herbal medicine with a wide range of health benefits. Recent studies have provided scientific evidence of its therapeutic effects with expanded application. This study investigated anti-melanogenic effect of barley sprout water extract (BSE) in murine melanocyte B16F10. Methods: Various concentrations (0, 50, 125, and $250{\mu}g/mL$) of BSE and arbutin (150 ppm) were applied to B16F10 stimulated with or without alpha-melanocyte stimulating hormone (100 nM) for 72 hours. The whitening potency of BSE was determined altered cellular melanin contents. Activity and expression of tyrosinase and microphthalmia-associated transcription factor (MITF) were also assayed. Results: Experimental results revealed that treatment with BSE reduced cellular melanin production by approximately 40% compared to the control. Molecular findings supported that suppressed activity and expression of tyrosinase and MITF proteins by BSE were associated with declined cellular melanogenesis. Furthermore, anti-melanogenic effect of BSE ($250{\mu}g/mL$) was similar to that of arbutin, a commonly used whitening agent. Lastly, polyphenols including p-coumaric, ferulic, and vanillic acids were identified in BSE using HPLC analyses. They might be potential active ingredients showing such melanogenesis-reducing effect. Conclusion: BSE was evident to possess favorable anti-melanogenic potency in an in vitro model. As a natural food sourced material, BSE could be an effective depigmentation agent with potential application in pharmaceutical and cosmetic industries.

Melanogenesis Inhibitory Effects of Methanolic Extracts of Umbilicaria esculenta and Usnea longissima

  • Kim, Moo-Sung;Cho, Hong-Bum
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.578-582
    • /
    • 2007
  • The primary objective of this study was to assess the in vitro melanogenesis inhibitory effects of methanolic extracts of the edible and medicinal lichens, Umbilicaria (Gyrophora) esculenta and Usnea longissima. The quantities of the total phenolic compounds of methanolic extract of the two lichen extracts were determined to be 1.46% and 2.62%, respectively. In order to evaluate the antioxidative effects of the extracts, we also measured electron donating abilities (EDA) and lipid peroxidation rates. The EDA values measured by the reduction of 1.1'-diphenyl-2-picrylhydrazyl (DPPH) were 72.8% and 80.7% for the extracts, with $SC_{50}$ (median scavenging concentration) values of $1.29{\pm}0.05\;mg/ml$ and $1.03{\pm}0.06\;mg/ml$, respectively. The rates of inhibition of lipid peroxidation using linoleic acid were 92.1% and 97.3% for the extracts, with $IC_{50}$ (median inhibitory concentration) values of $0.57{\pm}0.05\;mg/ml$ and $0.53{\pm}0.06\;mg/ml$, respectively. The inhibitory rates of the extracts against tyrosinase were 67.4% and 84.8%, respectively. The extracts were shown to reduce melanin formation in human melanoma cells. Melanin contents in the samples treated with 0.01% and 0.1% U. esculenta were 47.1% and 31.2%, respectively, and those treated with 0.01% and 0.1% Usnea longissima were 51.1% and 34.9%, respectively, whereas a value of 54.0% was registered when ascorbic acid was utilized as a positive control. In addition to direct tyrosinase inhibition, it was determined that the lichen extracts affected the activity of tyrosinase via the inhibition of tyrosinase glycosylation. As a result, the methanolic extracts of U. esculenta and Usnea longissima evidenced melanogenesis inhibitory effects, which occurred via multiple routes.