• Title/Summary/Keyword: Anti-lipid peroxidase

검색결과 86건 처리시간 0.021초

옥죽(玉竹)의 지질강하 및 항산화효과 (Effect of Polygonatum Odoratum on Lowering Lipid and Antioxidation)

  • 서용석;박원형;차윤엽
    • 한방재활의학과학회지
    • /
    • 제21권2호
    • /
    • pp.49-62
    • /
    • 2011
  • Objectives : This study was designed to examine the effects of Polygonatum odoratum EtOH ext. on lowering lipid and anti-oxidation using hyperlipidemic rat. Methods : Male rats weighting $195.21{\pm}4.93g$ were divided into 4 groups and fed high fat diet for 8 weeks. Each of 7 rats was divided into a control and sample group. We fed a control group of rats a basal diet and administered normal saline(100 mg/kg, 1 time/1 day) for 4 weeks. And we fed each experimental group of rats basal diet and administered an extract of Polygonatum odoratum(100 mg/kg, 200 mg/kg, 300 mg/kg, 1 time/1 day) for 4 weeks. At the end of the experiment, the rats were sacrificed to determine their chemical composition. We measured lipid of plasma and liver, concentration of anti-oxidative activity and tumor necrosis factor-$\alpha$($TNF-{\alpha}$). Results : 1. Concentration of plasma free fatty acid, low density lipoprotein-cholesterol showed a significant decrement in the 200 mg/kg and 300 mg/kg Polygonatum odoratum EtOH ext. groups than that of control group. Concentration of plasma total cholesterol, triglyceride showed a significant decrement in all Polygonatum odoratum EtOH ext. groups than that of control group. However, concentration of plasma high density lipoprotein-cholesterol was not significantly different in all the treatment groups. 2. Concentration of liver total cholesterol showed a significant decrement in the 200 mg/kg and 300 mg/kg Polygonatum odoratum EtOH ext. groups than that of control group. Concentration of liver triglyceride(TG) showed a significant decrement in all Polygonatum odoratum EtOH ext. groups than that of control group. 3. Concentration of plasma thiobarbituric acid reactive substance, and liver thiobarbituric acid reactive substance showed a significant decrement in the 200 mg/kg and 300 mg/kg Polygonatum odoratum EtOH ext. groups than that of control group. 4. The values of glutathione peroxidase activity showed a significant increment in all Polygonatum odoratum EtOH ext. groups than that of control group. The values of superoxide dismutase activity and catalase activity showed a significant increment in the 200 mg/kg and 300 mg/kg Polygonatum odoratum EtOH ext. groups than that of control group. 5. The values of plasma aspartate aminotransferase and alanine aminotransferase activities were not significantly different in all treatment groups. 6. Concentration of liver $TNF-{\alpha}$ showed a significant decrement in the 200 mg/kg and 300 mg/kg Polygonatum odoratum EtOH ext. groups than that of control group. Conclusions : Based on the results in this study, the Polygonatum odoratum EtOH ext. showed a positive effect in lowering lipid and anti-oxidation.

황금추출물이 과산화지질을 급여한 흰쥐의 지질대사, 산화반응 및 전염증성 Cytokine의 생산에 미치는 영향 (Effects of Scutellariae Radix Extract on Lipid Metabolism, Oxidation and Production of Pro-Inflammatory Cytokines in Rats Fed Highly Oxidized Fat)

  • 김성만;차윤엽
    • 한방비만학회지
    • /
    • 제16권2호
    • /
    • pp.85-91
    • /
    • 2016
  • 목적: 본 연구는 황금추출물이 과산화지질을 장기간 급여한 흰쥐의 지질대사, 산화반응 및 전염증성 cytokine의 생산에 미치는 영향을 검토하기 위해 수행되었다. 방법: 10주 동안 흰쥐에게 과산화지질을 과량으로 급여하여 생체 내에 과잉의 지질을 축적시킨 후, 황금추출물을 6주간 급여하였다. 그 후, 각 처리군별로 지질대사, 산화반응 및 전염성 cytokine의 생산에 미치는 영향을 조사했다. 결과: 혈액 내 유리지방산, 총지질, 총콜레스테롤, low density lipoprotein-cholesterol과 간장 내 총지질, 총콜레스테롤이 황금추출물 처리군에서 하락했다. 혈액 및 간장의 thiobarbituric acid 농도가 황금추출물 처리군에서 하락했다. 간장 내 항산화효소들(glutathione peroxidase, liver catalase, liver superoxide dismutase)의 활성치가 황금처리군에서 상승하였다. 전염증성 cytokine(interleukin $[IL]-1{\beta}$, tumor necrosis $factor-{\alpha}$, IL-6)의 농도는 황금추출물 처리군에서 하락했다. 반면에 IL-10의 농도는 황금추출물 처리군에서 증가했다. 결론: 이상의 결과들을 종합해 보면, 황금 추출물은 과산화지질을 급여한 비만쥐의 지질대사, 항산화반응 및 항염증반응에 긍정적인 효과를 나타내었음을 인식시켜 준다.

Dehydroepiandrosterone supplement increases malate dehydrogenase activity and decreases NADPH-dependent antioxidant enzyme activity in rat hepatocellular carcinogenesis

  • Kim, Jee-Won;Kim, Sook-Hee;Choi, Hay-Mie
    • Nutrition Research and Practice
    • /
    • 제2권2호
    • /
    • pp.80-84
    • /
    • 2008
  • Beneficial effects of dehydroepiandrosterone (DHEA) supplement on age-associated chronic diseases such as cancer, cardiovascular disease, insulin resistance and diabetes, have been reported. However, its mechanism of action in hepatocellular carcinoma in vivo has not been investigated in detail. We have previously shown that during hepatocellular carcinogenesis, DHEA treatment decreases formation of preneoplastic glutathione S-transferase placental form-positive foci in the liver and has antioxidant effects. Here we aimed to determine the mechanism of actions of DHEA, in comparison to vitamin E, in a chemically-induced hepatocellular carcinoma model in rats. Sprague-Dawley rats were administered with control diet without a carcinogen, diets with 1.5% vitamin E, 0.5% DHEA and both of the compounds with a carcinogen for 6 weeks. The doses were previously reported to have anti-cancer effects in animals without known toxicities. With DHEA treatment, cytosolic malate dehydrogenase activities were significantly increased by ${\sim}5$ fold and glucose 6-phosphate dehydrogenase activities were decreased by ${\sim}25%$ compared to carcinogen treated group. Activities of Se-glutathione peroxidase in the cytotol was decreased siguificantly with DHEA treatment, confirming its antioxidative effect. However, liver microsomal cytochrome P-450 content and NADPH-dependent cytochrome P-450 reductase activities were not altered with DHEA treatment. Vitamin E treatment decreased cytosolic Se-glutathione peroxidase activities in accordance with our previous reports. However, vitamin E did not alter glucose 6-phosphate dehydrogenase or malate dehydrogenase activities. Our results suggest that DHEA may have decreased tumor nodule formation and reduced lipid peroxidation as previously reported, possibly by increasing the production of NADPH, a reducing equivalent for NADPH-dependent antioxidant enzymes. DHEA treatment tended to reduce glucose 6-phosphate dehydrogenase activities, which may have resulted in limited supply for de novo synthesis of DNA via inhibiting the hexose monophophaste pathway. Although both DHEA and vitamin E effectively reduced preneoplastic foci in this model, they seemed to fimction in different mechanisms. In conclusion, DHEA may be used to reduce hepatocellular carcinoma growth by targeting NADPH synthesis, cell proliferation and anti-oxidant enzyme activities during tumor growth.

Protective Effect of Astaxanthin Produced by Xanthophyllomyces dendrorhous Mutant on Indomethacin-Induced Gastric Mucosal Injury in Rats

  • Kim, Jeong-Hwan;Choi, Seok-Keun;Lim, Wang-Jin;Chang, Hyo-Ihl
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권5호
    • /
    • pp.996-1003
    • /
    • 2004
  • Nonsteroidal anti-inflammatory drugs such as indomethacin induce severe gastric mucosal damage in humans and rodents. In the present study, the in vivo protective effect of astaxanthin on indomethacin-induced gastric lesions in rats was investigated. The test groups were injected with indomethacin (25 mg/kg) after the oral administration of astaxanthin (25 mg/kg) for 1, 2, and 3 days, while the control group was treated only with indomethacin. Thiobarbituric acid reactive substances in the gastric mucosa, as an index of lipid peroxidation, increased significantly after indomethacin administration and this increase was inhibited by oral administration of astaxanthin. In addition, pretreatment with astaxanthin resulted in a significant increase of the activities of superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH-px). Histologic examination clearly revealed acute gastric mucosal lesions induced by indomethacin in the stomach of the control group, but were not observed in that of the test group. These results indicate that astaxanthin activates SOD, catalase, and GSH-px, and removes the lipid peroxides and free radicals induced by indomethacin. It is evident that astaxanthin acts as a free radical quencher and antioxidant, and is an effective molecule in the remedy of gastric mucosal lesions.

Protective Effect of 4-(3,4-Dihydroxyphenyl)-3-Buten-2-One from Phellinus linteus on Naproxen-Induced Gastric Antral Ulcers in Rats

  • Kim, Jeong-Hwan;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권5호
    • /
    • pp.823-828
    • /
    • 2016
  • The present study investigated the protective effect of naturally purified 4-(3,4-dihydroxyphenyl)-3-buten-2-one (DHP) from Phellinus linteus against naproxen-induced gastric antral ulcers in rats. To verify the protective effect of DHP on naproxen-induced gastric antral ulcers, various doses (1, 5, and 10 μg/kg) of DHP were pretreated for 3 days, and then gastric damage was caused by 80 mg/kg naproxen applied for 3 days. DHP prevented naproxen-induced gastric antral ulcers in a dose-dependent manner. In particular, 10 μg/kg DHP showed the best protective effect against naproxen-induced gastric antral ulcers. Moreover, DHP significantly attenuated the naproxen-induced lipid peroxide level in gastric mucosa and increased the activities of radical scavenging enzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, in a dose-dependent manner. A histological examination clearly demonstrated that the gastric antral ulcer induced by naproxen nearly disappeared after the pretreatment of DHP. These results suggest that DHP can inhibit naproxen-induced gastric antral ulcers through prevention of lipid peroxidation and activation of radical scavenging enzymes.

The Effect of Dimethyl Dimethoxy Biphenyl Dicarboxylate (DDB) against Tamoxifen-induced Liver Injury in Rats: DDB Use Is Curative or Protective

  • El-Beshbishy, Hesham A.
    • BMB Reports
    • /
    • 제38권3호
    • /
    • pp.300-306
    • /
    • 2005
  • Tamoxifen citrate is an anti-estrogenic drug used for the treatment of breast cancer. It showed a degree of hepatic carcinogenesis, when it used for long term as it can decrease the hexose monophosphate shunt and thereby increasing the incidence of oxidative stress in liver rat cells leading to liver injury. In this study, a model of liver injury in female rats was done by intraperitoneal injection of tamoxifen in a dose of 45 mg/kg body weight for 7 successive days. This model produced a state of oxidative stress accompanied with liver injury as noticed by significant declines in the antioxidant enzymes (glutathione-S-transferase, glutathione peroxidase and catalase) and reduced glutathione concomitant with significant elevations in TBARS (thiobarbituric acid reactive substance) and liver transaminases; sGPT (serum glutamate pyruvate transaminase) and sGOT (serum glutamate oxaloacetate transaminase) levels. The oral administration of dimethyl dimethoxy biphenyl dicarboxylate (DDB) in a dose of 200 mg/kg body weight daily for 10 successive days, resulted in alleviation of the oxidative stress status of tamoxifen-intoxicated liver injury in rats as observed by significant increments in the antioxidant enzymes (glutathione-S-transferase, glutathione peroxidase and catalase) and reduced glutathione concomitant with significant decrements in TBARS and liver transaminases; sGPT and sGOT levels. The administration of DDB before tamoxifen intoxication (as protection) is more little effective than its curative effect against tamoxifen-induced liver injury. The data obtained from this study speculated that DDB can mediate its biochemical effects through the enhancement of the antioxidant enzyme activities and reduced glutathione level as well as decreasing lipid peroxides.

Effects of ingredients of Korean brown rice cookies on attenuation of cholesterol level and oxidative stress in high-fat diet-fed mice

  • Hong, Sun Hee;Kim, Mijeong;Woo, Minji;Song, Yeong Ok
    • Nutrition Research and Practice
    • /
    • 제11권5호
    • /
    • pp.365-372
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Owing to health concerns related to the consumption of traditional snacks high in sugars and fats, much effort has been made to develop functional snacks with low calorie content. In this study, a new recipe for Korean rice cookie, dasik, was developed and its antioxidative, lipid-lowering, and anti-inflammatory effects and related mechanisms were elucidated. The effects were compared with those of traditional rice cake dasik (RCD), the lipid-lowering effect of which is greater than that of traditional western-style cookies. MATERIALS/METHODS: Ginseng-added brown rice dasik (GBRD) was prepared with brown rice flour, fructooligosaccharide, red ginseng extract, and propolis. Mice were grouped (n = 7 per group) into those fed a normal AIN-76 diet, a high-fat diet (HFD), and HFD supplemented with RCD or GBRD. Dasik in the HFD accounted for 7% of the total calories. The lipid, reactive oxygen species, and peroxynitrite levels, and degree of lipid peroxidation in the plasma or liver were determined. The expression levels of proteins involved in lipid metabolism and inflammation, and those of antioxidant enzymes were determined by western blot analysis. RESULTS: The plasma and hepatic total cholesterol concentrations in the GBRD group were significantly decreased via downregulation of sterol regulatory element-binding protein-2 and 3-hydroxy-3-methylglutaryl-CoA reductase (P < 0.05). The hepatic peroxynitrite level was significantly lower, whereas glutathione was higher, in the GBRD group than in the RCD group. Among the antioxidant enzymes, catalase (CAT) and glutathione peroxidase (GPx) were significantly upregulated in the GBRD group (P < 0.05). In addition, nuclear factor-kappaB (NF-${\kappa}B$) expression in the GBRD group was significantly lower than that in the RCD group. CONCLUSIONS: GBRD decreases the plasma and hepatic cholesterol levels by downregulating cholesterol synthesis. This new dasik recipe also improves the antioxidative and anti-inflammatory status in HFD-fed mice via CAT and GPx upregulation and NF-${\kappa}B$ downregulation. These effects were significantly higher than those of RCD.

MPTP에 의해 유도된 생쥐의 신경독성에 대한 산국 추출물의 항산화 작용 (Antioxidant Activity of Water Extract of Chrysanthemum boreale against MPTP-induced Mice Models)

  • 김성훈;최종원
    • 동의생리병리학회지
    • /
    • 제27권1호
    • /
    • pp.49-56
    • /
    • 2013
  • Chrysanthemum boreale(CB) is an oriental medicinal herb which has been used traditionally for the treatment of various brain disease including headache, dizziness and sedation. In order to examine the mechanism of anti-parkinsonism effect, water extract of CB(100 mg and 200 mg/kg of b.w.) were administered orally during 28 days in MPTP-induced parkisonism mice model. Water extract of CB increased the motor activities. CB did not affect total MAO and MAO-B activity in the brain of MPTP-induced mice. CB significantly increased the concentration of lipid peroxidation in the mid brain. Also, CB significantly increased antioxidant enzyme including were SOD, catalase and glutathione peroxidase in the mid brain activity. CB significantly increased the concentration of dopamine and homovanillic acid in the brain. These results suggest that the anti-parkinsonism effect of CB is possibly due to the antioxidative effects at mid brain in MPTP-induced animal model.

한약재-식물성천연화학물질의 항산화 효능 및 기전 (Anti-Oxidant Efficiency and Memchanisms of Phytochemicals from Traditional Herbal Medicine)

  • 김종봉
    • 대한예방한의학회지
    • /
    • 제12권1호
    • /
    • pp.103-118
    • /
    • 2008
  • Antioxidants are compounds that protect cells against the damaging effects of reactive oxygen species (ROS). Some ROS, such as superoxide and hydrogen peroxide, are normally produced in cells as by-products of biochemical reactions or as signaling molecules. When ROS-generating reactions are activated excessively, pathological quantities of ROS are released to create an imbalance between antioxidants and ROS, called as oxidative stress. Oxidative stress, which may result in cellular damage, has been linked to cardiovascular disease, diabetes, cancer, and other degenerative conditions. In humans the first line of antioxidant defence are the antioxidant enzymes, especially SOD, glutathione peroxidase (GPX), and to a lesser extent catalase, as well as the tripeptide glutathione(GSH). These enzymes will help destroy ROS(reactive oxygen species) such as hydroxyl radical, $H_2O_2$ and lipid peroxides, while GSH protects against oxidized protein. Many herbal medicines possess antioxidant properties. Herbal antioxidants may protect against these diseases by contributing to the total antioxidant defense system of the human body. Here, many herbal medicines including Ginseng, Licorice, Ligusticum Chuanxiong, Ginkgo biloba and many others was reviewed in terms of anti-oxidant efficiency related to their components.

  • PDF

Cremastranone-Derived Homoisoflavanes Suppress the Growth of Breast Cancer Cells via Cell Cycle Arrest and Caspase-Independent Cell Death

  • Yeram Choi;Sangkyu Park;Seul Lee;Ha-Eun Shin;Sangil Kwon;Jun-Kyu Choi;Myeong-Heon Lee;Seung-Yong Seo;Younghee Lee
    • Biomolecules & Therapeutics
    • /
    • 제31권5호
    • /
    • pp.526-535
    • /
    • 2023
  • Breast cancer is the most common cancer and a frequent cause of cancer-related deaths among women wordlwide. As therapeutic strategies for breast cancer have limitations, novel chemotherapeutic reagents and treatment strategies are needed. In this study, we investigated the anti-cancer effect of synthetic homoisoflavane derivatives of cremastranone on breast cancer cells. Homoisoflavane derivatives, SH-17059 and SH-19021, reduced cell proliferation through G2/M cell cycle arrest and induced caspase-independent cell death. These compounds increased heme oxygenase-1 (HO-1) and 5-aminolevulinic acid synthase 1 (ALAS1), suggesting downregulation of heme. They also induced reactive oxygen species (ROS) generation and lipid peroxidation. Furthermore, they reduced expression of glutathione peroxidase 4 (GPX4). Therefore, we suggest that the SH-17059 and SH-19021 induced the caspase-independent cell death through the accumulation of iron from heme degradation, and the ferroptosis might be one of the potential candidates for caspase-independent cell death.