• Title/Summary/Keyword: Anti-interleukin-7

Search Result 613, Processing Time 0.029 seconds

Fatty Acid Composition and Anti-inflammatory Effects of the Freeze Dried Tenebrio molitor Larva (동결건조 갈색거저리 유충의 지방산 조성과 항염증 효과)

  • Kang, Mi-Sook;Kim, Min Ju;Han, Jung-Soon;Kim, Ae-Jung
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.2
    • /
    • pp.251-256
    • /
    • 2017
  • This study aimed to assess fatty acid composition and anti-inflammatory effects, such as nitric oxide(NO) production, expression of $TNF-{\alpha}$ and interleukin-6(IL-6), of Tenebrio molitor larva using RAW 264.7 cells. The content of total fatty acid in Tenebrio molitor larva was 76.14%, which was composed of oleic acid(42.12%), linoleic acid(32.67%) etc. There was no cytotoxicity at a dose level of 0.1, 1.0, 10, and $100{\mu}g/mL$ of freeze dried Tenebrio molitor larva ethanol extract(FDTEtOH) on RAW 264.7 cells. FDTEtOH significantly decreased NO production in LPS(lipopolysaccharide)-stimulated RAW 264.7 cells in a dose-dependent manner. Also, FDTEtOH dose-dependently suppressed the expression of $TNF-{\alpha}$ and IL-6. Thus, these results showed that Tenebrio molitor larva has the potential to be used as an anti-inflammatory food to improve immunity.

Anti-inflammatory Activity of the Methanol Extract from the Stem of Coriandrum Sativum in RAW 264.7 Cells

  • Jung, Ji Yun;Park, Chung A
    • The Korea Journal of Herbology
    • /
    • v.33 no.5
    • /
    • pp.73-79
    • /
    • 2018
  • Objectives : Coriandrum sativum is a medicinal herb that is used to enhance organoleptic quality and food flavor and as source of natural antioxidants. This research investigated the anti-inflammatory activity of Coriandrum sativum stem methanol extract (CSSE) using RAW 264.7 cells. Methods : Production of tumor necrosis factor-${\alpha}$(TNF-${\alpha}$), interleukin (IL)-$1{\beta}$, IL-6, and nitric oxide (NO) in the culture supernatant, protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor-kappa B (NF-${\kappa}B$) in the extract were assayed. Results : Treatment with CSSE ($100{\mu}g/m{\ell}$) resulted in inhibited levels of protein expression of lipopolysaccharide- (LPS-) induced iNOS, COX-2, and NF-${\kappa}B$ as well as production of TNF-${\alpha}$, IL-$1{\beta}$, IL-6, and NO induced by LPS. Conclusions : These results demonstrate that CSSE exhibits anti-inflammatory activities via decreasing production of pro-inflammatory mediators through suppression of the pathways of NF-${\kappa}B$ in LPS-induced RAW 264.7 cells. Thus, CSSE may have therapeutic potential for a variety of inflammation-mediated diseases.

Antimicrobial Effect on the Periodontal Pathogens and Anti-inflammatory Effect of Artemisiae Iwayomogii Herba (한인진(韓茵蔯)의 치주염세균에 대한 항균효과 및 항염효가)

  • Kim, Young-Hong;Jeong, Mi-Young;Lee, Na-Kyung;Lee, Jin-Yong;Herr, Yeek;Lee, Je-Hyun;Lim, Sabina
    • The Korea Journal of Herbology
    • /
    • v.23 no.2
    • /
    • pp.1-8
    • /
    • 2008
  • Objectives : The purpose of this study was to evaluate on the antimicrobial effect on the periodontal pathogens and anti-inflammatory effect of Artemisiae Iwayomogii Herba. Artemisiae Iwayomogii Herba has been used for treating as Artemisiae Capilaris Herba in Korea. Methods : Artemisiae Iwayomogii Herba was prepared by extracting medicinal herb with water. We investigated antimicrobial activity by the minimun inhibitory concentration (MIC) test. We also investigated inhibition of IL-$1{\beta}$-induced collagenase-l(MMP-l), stromelysin-1(MMP-3), interleukin-6 gene expression in human gingival fibroblasts. Results : The antimicrobial effect of Artemisiae Iwayomogii Herba was evaluated with MIC against periodontopathogens; Porphyromonas gingivalis 2561, W50, A7A1-28, 9-14K-1, Prevotella intermedia28, and Actinobacillus actinomycetemcomitans Y4, MICs of Artemisiae Iwayomogii Herba were 0.156 mg/ml, 0.625 mg/ml, 0.313 mg/ml, 1.25 mg/ml, 10 mg/ml and 10 mg/ml. The anti-inflammatory effect of Artemisiae Iwayomogii Herba was evaluated with Influence of herbs on the IL-$1{\beta}$-induced expression of MMP-1, MMP-3, interleukin-6, IL-$1{\beta}$ increased MMP-1, MMP-3, interleukin-6 mRNA levels. Artemisiae Iwayomogii Herba significantly inhibited IL-$1{\beta}$-induced MMP-1, MMP-3, interleukin-6 gene expressions in a dose-dependent manner. Conclusions : These results suggested that Artemisiae Iwayomogii Herba might reduce the excessive proteolytic capacity of the gingival fibroblast during inflammation and could be developed a new drug in periodontitis.

  • PDF

Antimicrobial Effect on the Periodontal Pathogens and Anti-inflammatory Effect of Eriobotryae Folium (비파엽(枇杷葉)의 치주염세균에 대한 항균효과 및 항염효과)

  • Jeong, Mi-Young;Kim, Young-Hong;Lee, Na-Kyung;Lee, Jin-Yong;Herr, Yeek;Lee, Je-Hyun;Lim, Sa-Bi-Na
    • The Journal of Korean Medicine
    • /
    • v.29 no.2
    • /
    • pp.182-192
    • /
    • 2008
  • Objective: The purpose of this study was to evaluate on the antimicrobial effect on the periodontal pathogens and anti-inflammatory effect of Eriobotryae folium. Eriobotryae folium are constituent herbs of Gagamgamroum, which has been used for a long time in oriental medicine as a herbal medicine for treating halitosis and toothache. Method: Eriobotryae folium was prepared by extracting medicinal herb with water. We investigated antimicrobial activity by the minimum inhibitory concentration (MIC) test. We also investigated inhibition of $IL-1{\beta}-induced$ collagenase (mmp-1), stromelysin-1 (mmp-3), interleukin-6 gene expression in human gingival fibroblasts using RTPCR analysis. Result: The antimicrobial effects of Eriobotryae folium was evaluated with MIC against periodontopathogens; Porphyromonas gingivalis 2561, W50, A7A1-28, 9-14K-1, Prevotella intermedia 28, and Actinobacillus actinomycetemcomitans Y4. MICs of Eriobotryae folium were 1.25 mg/ml, 2.5 mg/ml, 0.625 mg/ml, 1.25 mg/ml, 10 mg/ml and 10 mg/ml. The anti-inflammatory effect of Eriobotryae folium was evaluated with influence of herbs on the $IL-1{\beta}-induced$ expression of mmp-1, mmp-3, and interleukin-6. $IL-1{\beta}$ increased mmp-1, mmp-3, and interleukin-6 mRNA levels. Eriobotryae folium significantly inhibited $IL-1{\beta}-induced$ mmp-1, mmp-3, and interleukin-6 gene expressions in a dose-dependent manner. Conclusion: These results suggested that Eriobotryae folium might reduce the excessive proteolytic capacity of the gingival fibroblast during inflammation and could be developed as a new drug for periodontitis.

  • PDF

Differential Modulation of Lipopolysaccharide-Induced Inflammatory Cytokine Production by and Antioxidant Activity of Fomentariol in RAW264.7 Cells

  • Seo, Dong-Won;Yi, Young-Joo;Lee, Myeong-Seok;Yun, Bong-Sik;Lee, Sang-Myeong
    • Mycobiology
    • /
    • v.43 no.4
    • /
    • pp.450-457
    • /
    • 2015
  • Medicinal mushrooms have been used worldwide to treat cancer and modulate the immune system. Over the last several years, there has been increasing interest in isolating bioactive compounds from medicinal mushrooms and evaluating their health beneficial effects. Fomes fomentarius is used in traditional oriental medicine and is known to possess antioxidant, antiinflammatory, antidiabetic, and antitumor effects. In the present study, we isolated fomentariol from Fomes fomentarius and investigated its anti-inflammatory effect in murine macrophages (RAW264.7 cells) stimulated with lipopolysaccharides. Fomentariol inhibited the production of nitric oxide and intracellular reactive oxygen species triggered by lipopolysaccharides. Interestingly, fomentariol differentially regulated cytokine production triggered by lipopolysaccharides. Fomentariol effectively suppressed the production of interleukin-$1{\beta}$ and interleukin-6 but not tumor necrosis factor-${\alpha}$. The inhibitory effect of fomentariol against nitric oxide, interleukin-$1{\beta}$, and interleukin-6 production was possibly mediated by downregulation of the extracellular signal-regulated kinase signaling pathway. Taken together, our results suggest that fomentariol differentially modulated inflammatory responses triggered by lipopolysaccharides in macrophages and is one of the bioactive compounds that mediate the physiological effects of Fomes fomentarius.

Anti-inflammatory effect of a mixture of Astragalus membranaceus and Lithospermum erythrorhizon extracts by inhibition of MAPK and NF-κB signaling pathways in RAW264.7 cells (RAW264.7 대식세포에서 MAPK 및 NF-κB 신호전달 경로 억제를 통한 황기 및 지치 복합물의 항염증 효과)

  • Choi, Doo Jin;Kim, Geum Soog;Choi, Bo-Ram;Lee, Young-Seob;Han, Kyung Sook;Lee, Dong-Sung;Lee, Dae Young
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.4
    • /
    • pp.421-428
    • /
    • 2020
  • This study investigated a mixture of Astragalus membranaceus (AM) and Lithospermum erythrorhizon (LE) extracts (ALM16), exerts anti-inflammatory effects in lipopolysaccharide (LPS)-induced RAW264.7 macrophage cells, and its underlying mechanism. ALM16 was prepared by mixing AM and LE extracts in a ratio of 7:3 (w/w). Cytotoxicity of ALM16 in RAW264.7 cells was not shown up to 200 ㎍/mL of ALM16. The results of this study showed that ALM16 does-dependently inhibits the production of nitric oxide, prostaglandin E2 and pro-inflammatory cytokines (interleukin-1β, interleukin-6, and tumor necrosis factor-α) in LPS-induced RAW264.7 cells. ALM16 not only markedly reduced the protein expression levels of inducible nitric oxide synthase and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW264.7 cells, but also inhibited the nuclear translocation and DNA-binding activity of nuclear factor-kappa B (NF-κB). In addition, ALM16 specifically inhibited the phosphorylation of c-Jun N-terminal kinase and extracellular signal-regulated kinases in LPS-stimulated RAW264.7 cells. In conclusion, these results suggest that ALM16 may exert anti-inflammatory effect by modulating mitogen-activated protein kinase and NF-κB signaling pathways.

Anti-inflammatory effect of ozonated krill (Euphausia superba) oil in lipopolysaccharide-stimulated RAW 264.7 macrophages

  • Kim, Hong-Deok;Lee, Soo-Bin;Ko, Seok-Chun;Jung, Won-Kyo;Kim, Young-Mog;Kim, Seon-Bong
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.6
    • /
    • pp.15.1-15.9
    • /
    • 2018
  • Background: Inflammation has been known to associate with many human diseases. The objective of this study was to evaluate an anti-inflammatory effect of ozonated krill (Euphausia superba) oil, which was prepared by the treatment of krill oil using ozone gas. The anti-inflammatory activity was evaluated in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Results: Ozonated krill oil significantly inhibited nitric oxide (NO) production and suppressed the mRNA and protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW 264.7 macrophages. Ozonated krill oil also reduced the mRNA expression of inflammatory cytokines such as interleukin (IL)-$1{\beta}$, IL-6, and tumor necrosis factor (TNF)-${\alpha}$ in LPS-stimulated RAW 264.7 macrophages. To elucidate the mechanism underlying the anti-inflammatory activity of ozonated krill oil, we evaluated the effects of ozonated krill oil on the activation of mitogen-activated protein kinases (MAPKs) pathway. Ozonated krill oil suppressed the LPS-stimulated phosphorylation of p38 MAPK and c-Jun N-terminal kinases (JNK). Conclusion: This study revealed that the ozonated krill oil exhibited an anti-inflammatory effect in LPS-stimulated RAW 264.7 macrophages. To the best of our knowledge, this is the first report that ozonated krill oil suppressed pro-inflammatory mediator and cytokine expression in LPS-stimulated RAW 264.7 macrophages by inhibiting the phosphorylation of p38 MAPK and JNK.

Anti-inflammatory activity of 6-O-phospho-7-hydroxycoumarin in LPS-induced RAW 264.7 cells

  • Hong, Hyehyun;Park, Tae-Jin;Jang, Sungchan;Kim, Min-Seon;Park, Jin-Soo;Chi, Won-Jae;Kim, Seung-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.1
    • /
    • pp.33-41
    • /
    • 2022
  • Esculetin (also known as 6, 7-dihydroxycoumarin) a type of coumarin, has been exhibited anti-inflammatory and anti-aging effects. Biorenovation is the microbe-mediated enhancement of biological efficacies and structurally diversified compounds relative to their substrate compounds. The production of different kinds of esculetin derivatives using Bacillus sp. JD3-7 and their effects on lipopolysaccharide (LPS)-triggered inflammatory response in RAW 26.7 cells were assessed. One of the biorenovation products, identified as esculetin 6-O-phosphate (ESP), at concentrations of 1.25, 2.5, and 5 μM inhibited the LPS-stimulated production of inflammation markers of nitric oxide synthase 2 and cyclooxygenase 2 as well as their respective enzymatic reaction products of nitric oxide and prostaglandin E2 in the order of increasing concentrations (1.25, 2.5, and 5 μM). Additionally, ESP treatment suppressed the LPS-stimulated secretion of pro-inflammatory cytokines of interleukin (IL)-1β, IL-6, and tumor necrosis factor- α. Furthermore, these anti-inflammatory effect of ESP was associated with the downregulation of mitogen-activated protein kinase signaling, that is, extracellular signal-regulated kinase, c-Jun NH2-terminal kinase, and p38 mitogen-activated protein kinase signaling pathways. This study would therefore provide interesting insights into the biorenovation-assisted generation of a novel anti-inflammatory compound. ESP may be used to develop treatments for inflammatory disorders.

Beauvericin, a cyclic peptide, inhibits inflammatory responses in macrophages by inhibiting the NF-κB pathway

  • Yoo, Sulgi;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.4
    • /
    • pp.449-456
    • /
    • 2017
  • Beauvericin (BEA), a cyclic hexadepsipeptide produced by the fungus Beauveria bassiana, is known to have anti-cancer, anti-inflammatory, and anti-microbial actions. However, how BEA suppresses macrophage-induced inflammatory responses has not been fully elucidated. In this study, we explored the anti-inflammatory properties of BEA and the underlying molecular mechanisms using lipopolysaccharide (LPS)-treated macrophage-like RAW264.7 cells. Levels of nitric oxide (NO), mRNA levels of transcription factors and the inflammatory genes inducible NO synthase (iNOS) and interleukin (IL)-1, and protein levels of activated intracellular signaling molecules were determined by Griess assay, semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), luciferase reporter gene assay, and immunoblotting analysis. BEA dose-dependently blocked the production of NO in LPS-treated RAW264.7 cells without inducing cell cytotoxicity. BEA also prevented LPS-triggered morphological changes. This compound significantly inhibited nuclear translocation of the $NF-{\kappa}B$ subunits p65 and p50. Luciferase reporter gene assays demonstrated that BEA suppresses MyD88-dependent NF-${\kappa}B$ activation. By analyzing upstream signaling events for $NF-{\kappa}B$ activation and overexpressing Src and Syk, these two enzymes were revealed to be targets of BEA. Together, these results suggest that BEA suppresses $NF-{\kappa}B$-dependent inflammatory responses by suppressing both Src and Syk.

Analysis of Biological Experiments on the Anti-inflammatory and Antipyretic Effects of Hwangryeonhaedok-tang

  • Kim, Jung-Hoon;Shin, Hyeun-Kyoo
    • The Journal of Korean Medicine
    • /
    • v.33 no.4
    • /
    • pp.26-36
    • /
    • 2012
  • Objectives: To establish scientific and objective evidence for the use of a Korean medicine, articles regarding Hwangryeonhaedok-tang (HRHDT), a herbal medicine frequently used in Korean medical clinics and hospitals, were gathered and analyzed. Methods: The articles were classified as being from domestic or international journals, and by their year of publication. The mechanisms of the anti-inflammatory and antipyretic effects of HRHDT were investigated. Results: Of the 25 articles analyzed, 7 were published from Korea, 7 were from China, and 11 were from Japan. HRHDT showed anti-inflammatory and antipyretic effects through the regulation of the expression of Th1 cytokines including interleukin-2 (IL-2), IL-8, interferon-${\gamma}$ (IFN-${\gamma}$), and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$); and Th2 cytokines including IL-4, IL-6, and IL-12, which inhibit leukotriene B4 (LTB4), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and inflammatory cells. It also lowered preprodynorphin (PPD), and corticotropin-releasing factor (CRF) in the peripheral nerve system and hypothalamus. Conclusions: We speculate that the anti-inflammatory and antipyretic effects could be related to the therapeutic efficacy of HRHDT in removing pathogenic fire and heat.