• Title/Summary/Keyword: Anti-inflammatory responses

Search Result 496, Processing Time 0.03 seconds

Schisandrae Fructus ethanol extract attenuates particulate matter 2.5-induced inflammatory and oxidative responses by blocking the activation of the ROS-dependent NF-κB signaling pathway

  • Lee, Hyesook;Park, Cheol;Kwon, Da Hye;Hwangbo, Hyun;Kim, So Young;Kim, Min Yeong;Ji, Seon Yeong;Kim, Da Hye;Jeong, Jin-Woo;Kim, Gi-Young;Hwang, Hye-Jin;Choi, Yung Hyun
    • Nutrition Research and Practice
    • /
    • v.15 no.6
    • /
    • pp.686-702
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Schisandrae Fructus, the fruit of Schisandra chinensis Baill., has traditionally been used as a medicinal herb for the treatment of various diseases, and has proven its various pharmacological effects, including anti-inflammatory and antioxidant activities. In this study, we investigated the inhibitory effect of Schisandrae Fructus ethanol extract (SF) on inflammatory and oxidative stress in particulate matter 2.5 (PM2.5)-treated RAW 264.7 macrophages. MATERIALS/METHODS: To investigate the anti-inflammatory and antioxidant effects of SF in PM2.5-stimulated RAW 264.7 cells, the levels of pro-inflammatory mediator such as nitric oxide (NO) and prostaglandin E2 (PGE2), cytokines including interleukin (IL)-6 and IL-1β, and reactive oxygen species (ROS) were measured. To elucidate the mechanism underlying the effect of SF, the expression of genes involved in the generation of inflammatory factors was also investigated. We further evaluated the anti-inflammatory and antioxidant efficacy of SF against PM2.5 in the zebrafish model. RESULTS: The results indicated that SF treatment significantly inhibited the PM2.5-induced release of NO and PGE2, which was associated with decreased inducible NO synthase and cyclooxygenase-2 expression. SF also attenuated the PM2.5-induced expression of IL-6 and IL-1β, reducing their extracellular secretion. Moreover, SF suppressed the PM2.5-mediated translocation of nuclear factor-kappa B (NF-κB) from the cytosol into nuclei and the degradation of inhibitor IκB-α, indicating that SF exhibited anti-inflammatory effects by inhibiting the NF-κB signaling pathway. In addition, SF abolished PM2.5-induced generation of ROS, similar to the pretreatment of a ROS scavenger, but not by an inhibitor of NF-κB activity. Furthermore, SF showed strong protective effects against NO and ROS production in PM2.5-treated zebrafish larvae. CONCLUSIONS: Our findings suggest that SF exerts anti-inflammatory and antioxidant effects against PM2.5 through ROS-dependent down-regulating the NF-κB signaling pathway, and that SF can be a potential functional substance to prevent PM2.5-mediated inflammatory and oxidative damage.

Fermentation-Mediated Enhancement of Ginseng's Anti-Allergic Activity against IgE-Mediated Passive Cutaneous Anaphylaxis In Vivo and In Vitro

  • Hwang, Seon-Weon;Sun, Xiao;Han, Jun-Hyuk;Kim, Tae-Yeon;Koppula, Sushruta;Kang, Tae-Bong;Hwang, Jae-Kwan;Lee, Kwang-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1626-1634
    • /
    • 2018
  • Ginseng (the root of Panax ginseng Meyer) fermented by Lactobacillus plantarum has been found to attenuate allergic responses in in vitro and in vivo experimental models. Ginseng has been reported to also possess various biological functions including anti-inflammatory activity. The present study was aimed at comparing the anti-allergic effect of ginseng and fermented ginseng extracts on IgE-mediated passive cutaneous anaphylaxis in vitro in a murine cell line and in vivo in mice. Fermented ginseng extract (FPG) showed higher inhibitory effect against in vitro and in vivo allergic responses when compared with ginseng extract (PG). The secretion of ${\beta}$-hexosaminidase and interleukin (IL)-4 from the IgE-DNP-stimulated RBH-2H3 mast cells were significantly (p < 0.05) inhibited by FPG treatment, and this effect was concentration-dependent. Further, MKK4 activation and subsequent JNK phosphorylation were attenuated by FPG treatment. The inhibitory effect of FPG on the in vitro allergic response was verified in vivo against IgE-DNP-induced passive cutaneous anaphylaxis in a mouse model. These data indicated that the fermentation of ginseng with L. plantarum enhanced its anti-allergic effects both in vitro and in vivo. We predict that compositional changes in the ginsenosides caused by the fermentation may contribute to the change in the anti-allergic effects of ginseng. The results of our study highlight the potential of the use of FPG as a potential anti-allergic agent.

The Anti-inflammatory Effect of Green Tea Extract Against Prevotella intermedia (녹차추출물의 잇몸 질환 원인균에 대한 항염증 효능 연구)

  • Min, Dae-Jin;Yi, Sung-Won;Lee, Sung-Hoon;Kim, Seung-Seob;Kim, Chan-Ho;Lee, John-Hwan;Bae, Ji-Hyun;Kim, Han-Kon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.37 no.1
    • /
    • pp.67-73
    • /
    • 2011
  • Dental bacteria can cause gum diseases, i.e. gingivitis and periodontitis, by inducing inflammation in human gingiva. Therefore, the most effective way to prevent and treat gum diseases is the control of the inflammatory reactions induced by dental bacteria. Almost all present dental care products contain anti-bacterial agents to eliminate dental bacteria. However, recent studies report that even heat-killed dental bacteria can induce the inflammation responses in oral cells. Therefore, the method using anti-bacterial agents should be improved for better anti-inflammatory effect and the effective natural anti-inflammatory substances need to be found. In addition, the mechanisms of gingival inflammation should be elucidated. In this study, we tried to find out the mechanism of the gingival inflammation and effective natural anti-inflammatory substances with human gingival epithelial cells and Prevotella intermedia which is well known as a typical dental bacteria inducing gingivitis and periodontitis. In results, Prevotell intermedia initiated the gingival inflammation response by stimulating gingival epithelial cells to release an inflammatory cytokine, IL-8. Furthermore, the inflammation by Prevotella intermedia is related to COX-2, AP-1, and TNF-${\alpha}$ pathways. Green tea extract could effectively suppress the inflammatory responses induced by Prevotella intermedia. We find out the effective natural substance for the improvement of gum diseases by studying the mechanism of the gingival inflammation induced by dental bacteria.

Pyrrole-Derivative of Chalcone, (E)-3-Phenyl-1-(2-Pyrrolyl)-2-Propenone, Inhibits Inflammatory Responses via Inhibition of Src, Syk, and TAK1 Kinase Activities

  • Yang, Sungjae;Kim, Yong;Jeong, Deok;Kim, Jun Ho;Kim, Sunggyu;Son, Young-Jin;Yoo, Byong Chul;Jeong, Eun Jeong;Kim, Tae Woong;Han Lee, In-Sook;Cho, Jae Youl
    • Biomolecules & Therapeutics
    • /
    • v.24 no.6
    • /
    • pp.595-603
    • /
    • 2016
  • (E)-3-Phenyl-1-(2-pyrrolyl)-2-propenone (PPP) is a pyrrole derivative of chalcone, in which the B-ring of chalcone linked to ${\beta}$-carbon is replaced by pyrrole group. While pyrrole has been studied for possible Src inhibition activity, chalcone, especially the substituents on the B-ring, has shown pharmaceutical, anti-inflammatory, and anti-oxidant properties via inhibition of NF-${\kappa}B$ activity. Our study is aimed to investigate whether this novel synthetic compound retains or enhances the pharmaceutically beneficial activities from the both structures. For this purpose, inflammatory responses of lipopolysaccharide (LPS)-treated RAW264.7 cells were analyzed. Nitric oxide (NO) production, inducible NO synthase (iNOS) and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) mRNA expression, and the intracellular inflammatory signaling cascade were measured. Interestingly, PPP strongly inhibited NO release in a dose-dependent manner. To further investigate this anti-inflammatory activity, we identified molecular pathways by immunoblot analyses of nuclear fractions and whole cell lysates prepared from LPS-stimulated RAW264.7 cells with or without PPP pretreatment. The nuclear levels of p50, c-Jun, and c-Fos were significantly inhibited when cells were exposed to PPP. Moreover, according to the luciferase reporter gene assay after cotransfection with either TRIF or MyD88 in HEK293 cells, NF-${\kappa}B$-mediated luciferase activity dose-dependently diminished. Additionally, it was confirmed that PPP dampens the upstream signaling cascade of NF-${\kappa}B$ and AP-1 activation. Thus, PPP inhibited Syk, Src, and TAK1 activities induced by LPS or induced by overexpression of these genes. Therefore, our results suggest that PPP displays anti-inflammatory activity via inhibition of Syk, Src, and TAK1 activity, which may be developed as a novel anti-inflammatory drug.

Anti-inflammatory Effects of Staphylea bumalda Leaves Extracts in Murine Macrophages (쥐 대식세포에 대한 고추나무(Staphylea bumalda) 잎의 항염증 효과 검증)

  • Kim, Jeong Hwa;Lee, Jae Kwon
    • YAKHAK HOEJI
    • /
    • v.59 no.6
    • /
    • pp.251-258
    • /
    • 2015
  • Aim of the present study was to investigate whether methanol extract from the leaves of Staphylea bumalda could be used to suppress lipopolysaccharide (LPS)-induced inflammatory responses in murine macrophage cell lines, Raw 264.7 cells. The extract reduced nitric oxide (NO), cyclooxigenase-2 (COX-2) and pro-inflammatory cytokines production from LPS-stimulated Raw 264.7 cells. These inhibitory effects were associated with decreases in the phosphorylation of MAP kinases and the activity of $NF{\kappa}B$ signal pathways. Our results indicate that Staphylea bumalda significantly inhibits the inflammatory activity of activated macrophages, suggesting that Staphylea bumalda could be a potential candidate for the treatment of inflammatory disease.

Anti-inflammatory properties of broccoli sprout extract in a lipopolysaccharide-induced testicular dysfunction

  • Hyun-Jung Park
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.17-25
    • /
    • 2023
  • Brassica oleracea var. italica (broccoli) is a type of cabbage that contains vitamins, minerals, and phytochemicals. Consequently, it is used as a potential nutraceutical source for improving human health by reducing oxidative stress and inflammatory responses. Here, the effects of broccoli sprout extract (BSE) on the inflammatory response were investigated through lipopolysaccharide (LPS)-induced inflammatory mouse models. First, we found that the BSE obviously reduce NO production in RAW 264.7 cells in response to LPS stimulation in in vitro study. Pretreatment with BSE administration improved sperm motility and testicular cell survivability in LPS-induced endotoxemic mice. Additionally, BSE treatment decreased the levels of the pro-inflammatory cytokines TNF-a, IL-1β, and IL-6, and COX-2 in testis of LPS-induced endotoxemic mice models. In conclusion, BSE could be a potential nutraceutical for preventing the excessive immune related infertility.

P-Selectin-mediated Acute Inflammation Can Be Blocked by Chemically Modified Heparin, RO-Heparin

  • Gao, Yanguang;Li, Na;Fei, Rui;Chen, Zhihong;Zheng, Sheng;Zeng, Xianlu
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.350-355
    • /
    • 2005
  • Selectins are carbohydrate-binding cell adhesion molecules that play a major role in the initiation of inflammatory responses. Heparin can bind to P-selectin, and its anti-inflammatory property is mainly due to inhibition of P-selectin. However, the strong anticoagulant activity of heparin limits its clinical use. We prepared periodate-oxidized, borohydride-reduced heparin (RO-heparin) by chemical modification and tested its anticoagulant and anti-inflammatory activities. Activated partial thromboplastin time (aPTT) assays showed that, compared with heparin, RO-heparin had greatly reduced anticoagulant activity. Intravenous administration of this compound led to reduction in the peritoneal infiltration of neutrophils in a mouse acute inflammation model. In vitro cell adhesion experiments demonstrated that the effect of RO-heparin on inflammatory responses was mainly due to inhibiting the interaction of P-selectin with its ligands. These results indicate that RO-heparin may be a safer treatment for inflammation than heparin, especially when selectin is targeted.

Extracts of Grifola frondosa inhibit the MAPK signaling pathways involved in keratinocyte inflammation and ameliorate atopic dermatitis

  • Eun-Ju Choi;Jin Kyeong Choi
    • Nutrition Research and Practice
    • /
    • v.17 no.6
    • /
    • pp.1056-1069
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Grifola frondosa, commonly referred to as the maitake mushroom, has been studied extensively to explore its potential health benefits. However, its anti-inflammatory effects in skin disorders have not been sufficiently elucidated. This study aimed to elucidate the anti-inflammatory role of the ethanol extract of G. frondosa in atopic dermatitis (AD) using in vivo and in vitro models. MATERIALS/METHODS: We investigated its impact on skin and spleen inflammatory responses in Dermatophagoides farinae extract (DFE)/1-chloro-2,4 dinitrochlorobenzene (DNCB)-induced AD-like skin lesions in a mouse model. Additionally, we determined the immunosuppressive response and mechanism of G. frondosa by inducing atopic-like immune reactions in keratinocytes through tumor necrosis factor (TNF)-α/interferon (IFN)-γ stimulation. RESULTS: Our study revealed that G. frondosa ameliorates clinical symptoms in an AD-like mouse model. These effects contributed to the suppression of Th1, Th2, Th17, and Th22 immune responses in the skin and spleen, leading to protection against cutaneous inflammation. Furthermore, G. frondosa inhibited the production of antibodies immunoglobulin (Ig)E and IgG2a in the serum of AD mice. Importantly, the inhibitory effect of G. frondosa on inflammatory cytokines in TNF-α/IFN-γ-stimulated AD-like keratinocytes was associated with the suppression of MAPK (Mitogen Activated Protein Kinase) pathway activation. CONCLUSIONS: Collectively, these findings highlight the potential of G. frondosa as a novel therapeutic agent for AD treatment and prevention.

Scutellarein Reduces Inflammatory Responses by Inhibiting Src Kinase Activity

  • Sung, Nak Yoon;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.5
    • /
    • pp.441-449
    • /
    • 2015
  • Flavonoids are plant pigments that have been demonstrated to exert various pharmacological effects including anti-cancer, anti-diabetic, anti-atherosclerotic, anti-bacterial, and anti-inflammatory activities. However, the molecular mechanisms in terms of exact target proteins of flavonoids are not fully elucidated yet. In this study, we aimed to evaluate the anti-inflammatory mechanism of scutellarein (SCT), a flavonoid isolated from Erigeron breviscapus, Clerodendrum phlomidis and Oroxylum indicum Vent that have been traditionally used to treat various inflammatory diseases in China and Brazil. For this purpose, a nitric oxide (NO) assay, polymerase chain reaction (PCR), nuclear fractionation, immunoblot analysis, a kinase assay, and an overexpression strategy were employed. Scutellarein significantly inhibited NO production in a dose-dependent manner and reduced the mRNA expression levels of inducible NO synthase (iNOS) and tumor necrosis factor (TNF)-${\alpha}$ in lipopolysaccharide (LPS)-activated RAW264.7 cells. In addition, SCT also dampened nuclear factor (NF)-${\kappa}B$-driven expression of a luciferase reporter gene upon transfection of a TIR-domain-containing adapter-inducing interferon-${\beta}$ (TRIF) construct into Human embryonic kidney 293 (HEK 293) cells; similarly, NF-${\kappa}B$ nuclear translocation was inhibited by SCT. Moreover, the phosphorylation levels of various upstream signaling enzymes involved in NF-${\kappa}B$ activation were decreased by SCT treatment in LPS-treated RAW264.7 cells. Finally, SCT strongly inhibited Src kinase activity and also inhibited the autophosphorylation of overexpressed Src. Therefore, our data suggest that SCT can block the inflammatory response by directly inhibiting Src kinase activity linked to NF-${\kappa}B$ activation.

Sinensetin Inhibits Interleukin-6 in Human Mast Cell - 1 Via Signal Transducers and Activators of the Transcription 3 (STAT3) and Nuclear Factor Kappa B (NF-κB) Pathways

  • Chae, Hee-Sung;Kim, Young-Mi;Chin, Young-Won
    • Natural Product Sciences
    • /
    • v.23 no.1
    • /
    • pp.1-4
    • /
    • 2017
  • Sinensetin, a pentamethoxyflavone, is known to exert various pharmacological activities including anti-angiogenesis, anti-diabetic and anti-inflammatory activities. However, its effects on the human mast cell - 1 (HMC-1) mediated inflammatory mechanism remain unknown. To explore the mediator and cellular inflammatory response of sinensetin, we examined its influence on phorbol 12-myristate 13-acetate (PMA) plus A23187 induced inflammatory mediator production in a human mast cell line. In this study, interleukin (IL)-6 production was measured using the enzyme-linked immunosorbent assay and reverse transcription polymerase chain reaction. Sinensetin inhibited PMA plus A23187 induced IL-6 production in a dose-dependent manner as well as IL-4, IL-5 and IL-8 mRNA expression. Furthermore, sinensetin inhibited signal transducer and activator of transcription 3 (STAT3) phosphorylation, suggesting that sinensetin inhibits the production of inflammatory mediators by blocking STAT3 phosphorylation. Moreover, sinensetin was found to inhibit nuclear factor kappa B activation. These findings suggest that sinensetin may be involved in the regulation of mast cell-mediated inflammatory responses.