• Title/Summary/Keyword: Anti-inflammatory Effect

Search Result 3,147, Processing Time 0.037 seconds

C-reactive protein accelerates DRP1-mediated mitochondrial fission by modulating ERK1/2-YAP signaling in cardiomyocytes

  • Suyeon Jin;Chan Joo Lee;Gibbeum Lim;Sungha Park;Sang-Hak Lee;Ji Hyung Chung;Jaewon Oh;Seok-Min Kang
    • BMB Reports
    • /
    • v.56 no.12
    • /
    • pp.663-668
    • /
    • 2023
  • C-reactive protein (CRP) is an inflammatory marker and risk factor for atherosclerosis and cardiovascular diseases. However, the mechanism through which CRP induces myocardial damage remains unclear. This study aimed to determine how CRP damages cardiomyocytes via the change of mitochondrial dynamics and whether survivin, an anti-apoptotic protein, exerts a cardioprotective effect in this process. We treated H9c2 cardiomyocytes with CRP and found increased intracellular ROS production and shortened mitochondrial length. CRP treatment phosphorylated ERK1/2 and promoted increased expression, phosphorylation, and translocation of DRP1, a mitochondrial fission-related protein, from the cytoplasm to the mitochondria. The expression of mitophagy proteins PINK1 and PARK2 was also increased by CRP. YAP, a transcriptional regulator of PINK1 and PARK2, was also increased by CRP. Knockdown of YAP prevented CRP-induced increases in DRP1, PINK1, and PARK2. Furthermore, CRP-induced changes in the expression of DRP1 and increases in YAP, PINK1, and PARK2 were inhibited by ERK1/2 inhibition, suggesting that ERK1/2 signaling is involved in CRP-induced mitochondrial fission. We treated H9c2 cardiomyocytes with a recombinant TAT-survivin protein before CRP treatment, which reduced CRP-induced ROS accumulation and reduced mitochondrial fission. CRP-induced activation of ERK1/2 and increases in the expression and activity of YAP and its downstream mitochondrial proteins were inhibited by TAT-survivin. This study shows that mitochondrial fission occurs during CRP-induced cardiomyocyte damage and that the ERK1/2-YAP axis is involved in this process, and identifies that survivin alters these mechanisms to prevent CRP-induced mitochondrial damage.

Suppression of Microglial Activation by Acute Ethanol Administration through HT7 Stimulation (급성 알코올 투여 백서의 신문혈 자극이 소교세포 활성에 미치는 영향)

  • Su Yeon Seo;Se Kyun Bang;Suk Yun Kang;Seong Jin Cho;Kwang-Ho Choi;Yeonhee Ryu
    • Korean Journal of Acupuncture
    • /
    • v.41 no.2
    • /
    • pp.33-42
    • /
    • 2024
  • Objectives : The sigma-1 receptor is implicated in stress, depression, psychostimulant sensitization, and addiction vulnerability. Prior studies have indicated that ethanol exposure modulates sigma-1 receptor activity within the Ventral Tegmental Area (VTA). Here, we explore the sub-mechanisms underlying sigma-1 receptor activity induced by HT7 (Shinmun) stimulation in behavioral alterations following acute ethanol (ETOH) administration. Methods : Male Wistar rats were investigated for pro- and anti-inflammatory markers after injection of ETOH (1 g/kg) using cytokine enzyme-linked immunosorbent assay (ELISA)s. After confirming that HT7 stimulation changed the total distance traveled in the open field test (OFT), protein changes in the Ventral tegmental area (VTA) were measured by Western blotting. The expression level of inducible nitric oxide synthase (iNOS) after administration of a sigma-1 receptor antagonist (dihydrobromide 1047; BD1047, 10 mg/kg i.p.) and Shenmen (HT7) stimulation was compared. Results : As a result, acute ETOH administration increased proinflammatory marker levels (TNF-𝛼 and IL-6). HT7 stimulation restored the total distance response after acute ethanol administration. In addition, in the VTA, the levels of a microglial marker (iNOS), sigma-1 receptor and protein kinase C, which are predicted to be involved in up- and downregulation, were restored by HT7 stimulation. In particular, HT7 stimulation modulates iNOS expression through effects similar to BD treatment. This study suggests that the stimulatory effect of HT7 may be driven by microglial activation. Conclusions : Microglial activity is regulated by sigma-1 receptor, and sigma-1 receptor activity is regulated by HT7 stimulation. Significantly, we demonstrate that HT7 stimulation ameliorates behavioral alterations induced by acute ETOH administration through microglial activation within the VTA.

Pharmacoacupuncture for the Treatment of Frozen Shoulder: protocol for a systematic review and meta-analysis

  • Ji-Ho Lee;Hyeon-Sun Park;Sang-Hyeon Park;Dong-Ho Keum;Seo-Hyun Park
    • Journal of Pharmacopuncture
    • /
    • v.27 no.1
    • /
    • pp.14-20
    • /
    • 2024
  • Objectives: Frozen shoulder (FS) is one of the most challenging shoulder disorders for patients and clinicians. Its symptoms mainly include any combination of stiffness, nocturnal pain, and limitation of active and passive glenohumeral joint movement. Conventional treatment options for FS are physical therapy, nonsteroidal anti-inflammatory drugs, injection therapy, and arthroscopic capsular release, but adverse and limited effects continue to present problems. As a result, pharmacoacupuncture (PA) is getting attention as an alternative therapy for patients with FS. PA is a new form of acupuncture treatment in traditional Korean medicine (TKM) that is mainly used for musculoskeletal diseases. It has similarity and specificity compared to corticosteroid injection and hydrodilatation, making it a potential alternative injection therapy for FS. However, no systematic reviews investigating the utilization of PA for FS have been published. Therefore, this review aims to standardize the clinical use of PA for FS and validate its therapeutic effect. Methods: The protocol was registered in Prospero (CRD42023445708) on 18 July 2023. Until Aug. 31, 2023, seven electronic databases will be searched for randomized controlled trials of PA for FS. Authors will be contacted, and manual searches will also be performed. Two reviewers will independently screen and collect data from retrieved articles according to predefined criteria. The primary outcome will be pain intensity, and secondary outcomes will be effective rate, Constant-Murley Score, Shoulder Pain and Disability Index, range of motion, quality of life, and adverse events. Bias and quality of the included trials will be assessed using the Cochrane handbook's risk-of-bias tool for randomized trials. Meta analyses will be conducted using Review Manager V.5.3 software. GRADE will be used to evaluate the level of evidence for each outcome. Results: This systematic review and meta-analysis will be conducted following PRISMA statement. The results will be published in a peer-reviewed journal. Conclusion: This review will provide scientific evidence to support health insurance policy as well as the standardization of PA in clinical practice.

Effects of the interaction between seaweed consumption and the polygenic risk score on inflammation in Korean adults (한국 성인의 해조류 섭취와 다유전자 위험 점수 간의 상호작용이 염증에 미치는 영향)

  • Gayeon Hong;Dayeon Shin
    • Journal of Nutrition and Health
    • /
    • v.57 no.2
    • /
    • pp.211-227
    • /
    • 2024
  • Introduction: Seaweed is a sustainable and underexplored source of bioactive compounds with potent anti-inflammatory activities. However, studies on the interaction between seaweed and genes on inflammation are limited. Purpose: We aimed to evaluate the relationships between seaweed consumption and the polygenic risk scores (PRS) and their interactions with high-sensitivity C-reactive protein (hs-CRP) levels. Methods: Information on seaweed consumption was collected using a food frequency questionnaire, which included laver, kelp, and sea mustard among the items consumed. A total of 31 hs-CRP-related single nucleotide polymorphisms (SNPs) were selected using genome-wide association studies and clumping analysis, and the individual PRS were calculated by weighting the effect size of each allele in the selected SNPs of 39,369 middle-aged (≥40 years) Koreans using the Korean Genome and Epidemiology Study (KoGES)-Health Examinees (HEXA) cohort data. To investigate the interaction between seaweed intake and the PRS on hs-CRP levels >1 mg/L, hazard ratios (HRs) and 95% confidence intervals (CIs) were assessed using multivariable Cox proportional hazards models. Results: During a mean follow-up period of 4.8 years, we recorded 436 patients with elevated hs-CRP levels. Women in the highest tertile of the PRS with the lowest quartile of seaweed intake had an increased incidence of elevated hs-CRP levels compared with women in the lowest tertile of the PRS with the lowest seaweed intake quartile (HR 2.34, 95% CI 1.23-4.45). No significant association was observed among the men. Conclusion: In conclusion, we identified a new interaction between the PRS, seaweed intake, and inflammation in Korean women, and this study suggests that the interaction between the identification of genetic predisposition and dietary seaweed intake may have an impact on determining the risk of developing hyperinflammation in the future.

The Production and Correlation of Silica Induced Proinflammatory Cytokines and TGF-$\beta$ from Monocytes of Balb/C Mice (Balb/C mouse의 폐장대식세포에서 유리규산 자극에 의한 Proinflammatory Cytokine과 TGF-$\beta$의 생성 및 상관관계)

  • Ki, Shin-Young;Kim, Eun-Young;Kim, Mi-Ho;Uh, Soo-Taek;Kim, Yong-Hoon;Park, Choon-Sik;Lee, Hi-Bal
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.4
    • /
    • pp.823-834
    • /
    • 1998
  • Background: Chronic inhalation of silica induces the lung fiborsis. The alveolar macrophages ingest the inhaled silica; they liberate the pro-inflammatory cytokines such as IL-1$\beta$, IL-6, TNF-$\alpha$ and fibrogenic cytokines, TGF-$\beta$ and PDGF. Cytokines liberated from macrophage have pivotal role in pulmonary fibrosis. There is a complex cytokine network toward fibrosis. However, the exact roles and the interaction among the proinflammatory cytokines and TGF-$\beta$, a fibrogenic cytokine, have not been defined, yet. In this study, we investigated silica induced IL-1$\beta$, IL-6, TNF-$\alpha$ and TGF-$\beta$ production and the effect of IL-1$\beta$, IL-6, TNF-$\alpha$ on the production of TGF-$\beta$ from lung macrophages of Balb/C mice. Method: We extracted the lung of Balb/C mice and purified monocytes by Percoll gradient method. Macrphages were stimulated by silica ($SiO_2$) in the various concentration for 2, 4, 8, 12, and 24 hours. The supernatants were used for the measurement of protein levels by bioassay, and cells for the levels of mRNA by in situ hybridization. Results: The production of IL-6 was not observed till 4 hours, and reached the peak levels at 8 hours after stimulation of silica. The production of TNF-$\alpha$ increased from 2 hours and reached the peak levels at 4 hours after stimulation of silica. The spontaneous TGF-$\beta$ production reached the peak levels at 24 hours. TNF-$\alpha$ upregulated the silica induced TGF-$\beta$ production. Silica induced TGF-$\beta$ production was blocked by pretreated anti-TNF-$\alpha$ antibody. In situ hybridization revealed the increased positive signals at 4 hours in IL-6, at 4 hours TNF-$\alpha$ and 12 hours in TGF-$\beta$. Conclusion: The results above suggest that silica induced the sequential production of IL-6, 1NF-$\alpha$ and TGF-$\beta$ from macrophages and TNF-$\alpha$ upregultaes the production of TGF-$\beta$ from silica-induced macrophages.

  • PDF

The Effects of Ethyl Pyruvate on Lipopolysaccharide-induced Acute Lung Injury (리포다당질에 의한 급성폐손상에서 Ethyl Pyruvate의 효과)

  • Lee, Seung Hyeun;Yoon, Dae Wui;Jung, Jin Yong;Lee, Kyung Joo;Kim, Se Joong;Lee, Eun Joo;Kang, Eun Hae;Jung, Ki Hwan;Lee, Sung Yong;Lee, Sang Yeub;Kim, Je Hyeong;Shin, Chol;Shim, Jae Jeong;In, Kwang Ho;Kang, Kyung Ho;Yoo, Se Hwa
    • Tuberculosis and Respiratory Diseases
    • /
    • v.61 no.4
    • /
    • pp.374-383
    • /
    • 2006
  • Background: Ethyl pyruvate (EP) is a derivative of pyruvate that has recently been identified by both various in vitro and in vivo studies to have antioxidant and anti-inflammatory effects. The aim of this study was to determine the effect of EP on lipopolysaccharide (LPS)-induced acute lung injury (ALI). Methods: 5 weeks old, male BALB/c mice were used. ALI was induced by an intratracheal instillation of LPS 0.5mg/Kg/$50{\mu}L$ of saline. The mice were divided into the control, LPS, EP+LPS, and LPS+EP groups. In the control group, balanced salt solution was injected intraperitoneally 30 minutes before or 9 hours after the intratracheal instillation of saline. In the LPS group, a balanced salt solution was also injected intraperitoneally 30 minutes before or 9 hours after instillation the LPS. In the EP+LPS group, 40mg/Kg of EP was injected 30 minutes before LPS instillation. In the LPS+EP group, 40mg/Kg of EP was injected 9 hours after LPS instillation. The TNF-$\alpha$ and IL-6 concentrations in the bronchoalveolar lavage fluid (BALF), and that of NF-$\kappa$B in the lung tissue were measured in the control, LPS and EP+LPS groups at 6 hours after instillation of saline or LPS, and the ALI score and myeloperoxidase (MPO) activity were measured in all four groups 24 and 48 hours after LPS instillation, respectively. Results: The TNF-$\alpha$ and IL-6 concentrations were significantly lower in the EP+LPS group than in the LPS group (p<0.05). The changes in the concentration of these inflammatory cytokines were strongly correlated with that of NF-$\kappa$B (p<0.01). The ALI scores were significantly lower in the EP+LPS and LPS+EP groups compared with the LPS group (p<0.05). In the EP+LPS group, the MPO activity was significantly lower than the LPS group (p=0.019). Conclusion: EP, either administered before or after LPS instillation, has protective effects against the pathogenesis of LPS-induced ALI. EP has potential theurapeutic effects on LPS-induced ALI.

Beneficial Effects of Acanthopanax senticosus Extract in Type II Diabetes Animal Model via Down-Regulation of Advanced Glycated Hemoglobin and Glycosylation End Products (제2형 당뇨 동물모델에서 가시오가피 추출물의 당화혈색소 및 최종당화산물 억제를 통한 혈당조절 효과)

  • Kwon, Han Ol;Lee, Minhee;Kim, Yong Jae;Kim, Eun;Kim, Ok-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.7
    • /
    • pp.929-937
    • /
    • 2016
  • The purpose of this study was to investigate the effect of Acanthopanax senticosus extract (ASE) (ethanol : DW=1:1, v/v) on inhibition of type 2 diabetes using an OLETF rat model via regulation of HbA1c and AGEs levels. Supplementation with ASE 0.1% and 0.5% effectively lowered levels of glucose, insulin, oral glucose tolerance test, and Homa-insulin resistance, suggesting reduced insulin resistance. Blood levels of HbA1c and AGEs were significantly reduced in a dose-dependent manner. As oxidative stress plays a key role in accelerating production of HbA1c and AGEs, which worsen symptoms of type 2 diabetes, levels of malonaldehyde and pro-inflammatory cytokines were measured. Lipid peroxidation in both blood and liver tissues was significantly reduced, and induction of pro-inflammatory cytokines interleukin-${\beta}$ and tumor necrosis factor-${\alpha}$, which elevate production of HbA1c and AGEs, was inhibited (P<0.05). To evaluate the possible cellular events after AGEs receptor activation, genetic expression of protein kinase C (PKC)-${\delta}$ and transforming growth factor (TGF)-${\beta}$ was measured by real-time polymerase chain reaction. Supplementation with both ASE 0.1% and 0.5% significantly inhibited mRNA expression of PKC-${\delta}$ and TGF-${\beta}$, indicating that ASE may have beneficial effects on preventing insulin-resistant cells or tissues from progressing to diabetic complications. Taken together, ASE has potential to improve type 2 diabetes by inhibiting insulin resistance and protein glycosylation, including production of HbA1c and AGEs. Anti-oxidative activities of ASE are a main requisite for reducing production of HbA1c and AGEs and are also related to regulation of the PKC signaling pathway, resulting in suppression of TGF-${\beta}$, which increases synthesis of collagen, prostaglandin, and disease-related proteins.

Brazilin downregulates CCL20 expression via regulation of STAT3 phosphorylation in TNF-α/IL-17A/IFN-γ-induced HaCaT cells (TNF-α/IL-17A/IFN-γ 유도된 HaCaT 세포에서 브라질린의 STAT3 인산화 억제를 통한 CCL20 저해 효과)

  • Kim, Mi Ran;Hwang, Hyung Seo
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.2
    • /
    • pp.185-192
    • /
    • 2021
  • Psoriasis is a chronic intractable skin disease caused by various inflammatory cytokines such as IL-6, CXCL8, TNF-α, and IFN-γ, as well as IL-17A secreted from Th17 cells and is characterized by hyperkeratosis and chronic inflammation of the epidermis. Brazilin, an active ingredient of Caesalpinia sappan L., is known to exert antioxidant and anti-inflammatory activity, and function in skin barrier improvement. In particular, it was shown as a potential material for treating psoriasis in a tumor necrosis factor (TNF)-α-stimulated HaCaT keratinocyte model. However, the direct regulation of the C-C motif chemokine ligand (CCL) 20, a psoriasis-inducing factor, by brazilin has not been reported. Therefore, in this study, we investigated the suppression of CCL20 and the regulatory mechanism by brazilin using a psoriasis-like model. First, brazilin downregulated CCL20 and CXCL8 in IL-17A-stimulated HaCaT cells in a concentration-dependent manner by inhibiting signal transducer and transcription (STAT)3 phosphorylation. In addition, brazilin significantly inhibited the expression of psoriasis-related genes CXCL8, CCL20, IL-1, IL-6, and TNF-α in TNF-α/IL-17A/IFN-γ-stimulated HaCaT cells. Moreover, brazilin also had a positive effect on improving the skin barrier in TNF-α/IL-17A/IFN-γ-stimulated HaCaT cells. The above results indicated that brazilin ultimately downregulated CCL20 expression by inhibiting STAT3 phosphorylation, and also suppressed the expression of psoriasis-induced cytokines. If the efficacy of brazilin in improving psoriasis is verified through animal models and clinical trials in the future, it may represent a potentially therapeutic substance for psoriasis patients.

Antihepatotoxic and Antigenotoxic Effects of Herb Tea Composed of Chrysanthemum morifolium Ramat. (국화차를 포함하는 허브차의 CCl4로 유도된 간세포손상 보호 및 항유전독성 효과)

  • Lee, Hyun-Jung;Hwang, Young-Il;Park, Eun-Ju;Choi, Sun-Uk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.1
    • /
    • pp.78-83
    • /
    • 2011
  • The flower of Chrysanthemum morifolium Ramat. with antioxidant, anticancer, and anti-inflammatory functions has been a widely used traditional herb as a healthy beverage and medicine. The aim of the present study was to investigate a herb tea consisting of C. morifolium Ramat., Corni fructus and Schizandra chinensis Baillon for its hepatoprotective activity against $CCl_4$-induced toxicity in freshly isolated rat hepatocytes and antigenotoxic effect against oxidative stress induced DNA damage in human leukocytes. Three different compositions of the herb tea (Mix I, II, and III) were prepared by extracting with water at $90^{\circ}C$. Freshly isolated rat hepatocytes were exposed to $CCl_4$ along with/without various concentrations of each tea. Protection of rat primary cells against $CCl_4$-induced damage was determined by the MTT assay. The significant antihepatotoxic effect of the tea was shown in Mix I and II. The increased transaminase (AST and/or ALT) release in media of $CCl_4$ treated hepatocytes was significantly lowered by all the teas tested. The effect of the tea on DNA damage in human leukocytes was evaluated by Comet assay. All teas showed a protective effect against $H_2O_2$-induced DNA damage. From these results, it is assumed that herb tea based on C. morifolium Ramat., Corni fructus and Schizandra chinensis Baillon exerted antihepatotoxic and antigenotoxic effects.

Processed Panax ginseng, sun ginseng, inhibits the differentiation and proliferation of 3T3-L1 preadipocytes and fat accumulation in Caenorhabditis elegans

  • Lee, Hyejin;Kim, Jinhee;Park, Jun Yeon;Kang, Ki Sung;Park, Joeng Hill;Hwang, Gwi Seo
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.257-267
    • /
    • 2017
  • Background: Heat-processed ginseng, sun ginseng (SG), has been reported to have improved therapeutic properties compared with raw forms, such as increased antidiabetic, anti-inflammatory, and antihyperglycemic effects. The aim of this study was to investigate the antiobesity effects of SG through the suppression of cell differentiation and proliferation of mouse 3T3-L1 preadipocyte cells and the lipid accumulation in Caenorhabditis elegans. Methods: To investigate the effect of SG on adipocyte differentiation, levels of stained intracellular lipid droplets were quantified by measuring the oil red O signal in the lipid extracts of cells on differentiation Day 7. To study the effect of SG on fat accumulation in C. elegans, L4 stage worms were cultured on an Escherichia coli OP50 diet supplemented with $10{\mu}g/mL$ of SG, followed by Nile red staining. To determine the effect of SG on gene expression of lipid and glucose metabolism-regulation molecules, messenger RNA (mRNA) levels of genes were analyzed by real-time reverse transcription-polymerase chain reaction analysis. In addition, the phosphorylation of Akt was examined by Western blotting. Results: SG suppressed the differentiation of 3T3-L1 cells stimulated by a mixture of 3-isobutyl-1-methylxanthine, dexamethasone, and insulin (MDI), and inhibited the proliferation of adipocytes during differentiation. Treatment of C. elegans with SG showed reductions in lipid accumulation by Nile red staining, thus directly demonstrating an antiobesity effect for SG. Furthermore, SG treatment down-regulated mRNA and protein expression levels of peroxisome proliferator-activated receptor subtype ${\gamma}$ ($PPAR{\gamma}$) and CCAAT/enhancer-binding protein-alpha ($C/EBP{\alpha}$) and decreased the mRNA level of sterol regulatory element-binding protein 1c in MDI-treated adipocytes in a dose-dependent manner. In differentiated 3T3-L1 cells, mRNA expression levels of lipid metabolism-regulating factors, such as amplifying mouse fatty acid-binding protein 2, leptin, lipoprotein lipase, fatty acid transporter protein 1, fatty acid synthase, and 3-hydroxy-3-methylglutaryl coenzyme A reductase, were increased, whereas that of the lipolytic enzyme carnitine palmitoyltransferase-1 was decreased. Our data demonstrate that SG inversely regulated the expression of these genes in differentiated adipocytes. SG induced increases in the mRNA expression of glycolytic enzymes such as glucokinase and pyruvate kinase, and a decrease in the mRNA level of the glycogenic enzyme phosphoenol pyruvate carboxylase. In addition, mRNA levels of the glucose transporters GLUT1, GLUT4, and insulin receptor substrate-1 were elevated by MDI stimulation, whereas SG dose-dependently inhibited the expression of these genes in differentiated adipocytes. SG also inhibited the phosphorylation of Akt (Ser473) at an early phase of MDI stimulation. Intracellular nitric oxide (NO) production and endothelial nitric oxide synthase mRNA levels were markedly decreased by MDI stimulation and recovered by SG treatment of adipocytes. Conclusion: Our results suggest that SG effectively inhibits adipocyte proliferation and differentiation through the downregulation of $PPAR{\gamma}$ and $C/EBP{\alpha}$, by suppressing Akt (Ser473) phosphorylation and enhancing NO production. These results provide strong evidence to support the development of SG for antiobesity treatment.