• Title/Summary/Keyword: Anti-fungal activity

Search Result 123, Processing Time 0.029 seconds

Investigation of the Antifungal Activity and Mechanism of Action of LMWS-Chitosan

  • Park, Yoon-Kyung;Kim, Mi-Hyun;Park, Seong-Cheol;Cheong, Hyeon-Sook;Jang, Mi-Kyeong;Nah, Jae-Woon;Hahm, Kyung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.10
    • /
    • pp.1729-1734
    • /
    • 2008
  • Chitosan, a cationic polysaccharide, has been widely used as a dietary supplement and in a variety of pharmacological and biomedical applications. The antifungal activity and mechanism of action of low molecular weight water-soluble chitosan (LMWS-chitosan) were studied in fungal cells and vesicles containing various compositions of fungal lipids. LMWS-chitosan showed strong antifungal activity against various pathogenic yeasts and hyphae-forming fungi but no hemolytic activity or cytotoxicity against mammalian cells. The degree of calcein leakage was assessed on the basis of lipid composition (PC/CH; 10:1, w/w). Our result showing that LMWS-chitosan interacts with liposomes demonstrated that chitosan induces leakage from zwitterionic lipid vesicles. Confocal microscopy revealed that LMWS-chitosan was located in the plasma membrane. Finally, scanning electron microscopy revealed that LMWS-chitosan causes significant morphological changes on fungal surfaces. Its potent antibiotic activity suggests that LMWS-chitosan is an excellent candidate as a lead compound for the development of novel anti-infective agents.

Antifungal Activity of Bee Venom and Sweet Bee Venom against Clinically Isolated Candida albicans

  • Lee, Seung-Bae
    • Journal of Pharmacopuncture
    • /
    • v.19 no.1
    • /
    • pp.45-50
    • /
    • 2016
  • Objectives: The purpose of this study was to investigate the antifungal effect of bee venom (BV) and sweet bee venom (SBV) against Candida albicans (C. albicans) clinical isolates. Methods: In this study, BV and SBV were examined for antifungal activities against the Korean Collection for Type Cultures (KCTC) strain and 10 clinical isolates of C. albicans. The disk diffusion method was used to measure the antifungal activity and minimum inhibitory concentration (MIC) assays were performed by using a broth microdilution method. Also, a killing curve assay was conducted to investigate the kinetics of the anti-fungal action. Results: BV and SBV showed antifungal activity against 10 clinical isolates of C. albicans that were cultured from blood and the vagina by using disk diffusion method. The MIC values obtained for clinical isolates by using the broth microdilution method varied from $62.5{\mu}g/mL$ to $125{\mu}g/mL$ for BV and from $15.63{\mu}g/mL$ to $62.5{\mu}g/mL$ for SBV. In the killing-curve assay, SBV behaved as amphotericin B, which was used as positive control, did. The antifungal efficacy of SBV was much higher than that of BV. Conclusion: BV and SBV showed antifungal activity against C. albicans clinical strains that were isolated from blood and the vagina. Especially, SBV might be a candidate for a new antifungal agent against C. albicans clinical isolates.

Evaluation of Anti-Sapstain Activity of Rice Powder Adhesives Modified with Wood Preservatives

  • Lee, Min;Kang, Eun-Chang;Lee, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.872-879
    • /
    • 2016
  • Demand of natural interior finishing material has been widely sprayed in nowadays because many weak people as children, pregnant women, and elder people are being struggled with sick house syndrome due to volatile organic compounds such as formaldehyde, toluene, benzene, etc. Our research group developed a no-added formaldehyde adhesive for wood-based panels from mainly rice powder and some additives in the previous study for abating sick house syndrome. Since the rice powder adhesive provides a good source of nutrients with microorganisms, it was suspected a susceptibility of the rice powder adhesive to fungal and sapstain attack. We evaluated anti-sapstain activity of the rice powder adhesives modified by adding wood preservatives. We modified the rice powder adhesive by adding three different types of anti-sapstain preservatives at three different concentrations to assess their anti-sapstin activity. The bonding strengths of the modified rice powder adhesives were still outstanding performance on all samples. Moreover, the plywood manufactured with the modified rice powder adhesive satisfied outdoor use requirement for ordinary plywood (KS F3101, Korean Standard). The results obtained showed that at least 3% of preservative should be added to the rice powder adhesive to obtain effective anti-sapstain activity.

Pathogenomic Signaling Networks and Antifungal Drug Development for Human Fungal Pathogen Cryptococcus neoformans (동물병원성 뇌수막염 유발 곰팡이 Cryptococcus neoformans의 Pathogenomic Signaling Network 연구와 항곰팡이제 개발)

  • Ko, Young-Joon;Kwon, Yoo-Won;Na, Han-Na;Bahn, Yong-Sun
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.1
    • /
    • pp.13-18
    • /
    • 2010
  • Past decade systemic mycoses caused by opportunistic human fungal pathogens, including Candida, Aspergillus, and Cryptococcus, have been a growing problem for both immunocompromised and immunocompetent individuals. Particularly, Cryptococcus neoformans has recently emerged as a major fungal pathogen, which can cause fungal pneumonia and meningitis that are lethal if not timely medicated. However, treatment for cryptococcosis has been difficult due to a lack of proper anti-cryptococcal drugs with fungicidal activity and less toxicity. In this review we introduced novel therapeutic methods for treating cryptococcosis by exploring pathogenomic signa1ing networks of C. neoformans with genome-wide transcriptome approaches as well as diverse molecular/genetic tools.

Synthesis and Antimicrobial Evaluation of Some Novel 2-(4-Chlorophenylimino) thiazolidin-4-one Derivatives

  • B'Bhatt, H.;Sharma, S.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.3
    • /
    • pp.341-347
    • /
    • 2012
  • A series of 2-(4-chlorophenylimino)-5-((3-(p-substituted phenyl)-1-phenyl-1H-pyrazol-4-yl) methylene) thiazolidin-4-one ($\mathbf{3a-h}$) compounds were prepared from the 2-(4-chlorophenylimino) thiazolidin-4-one ($\mathbf{1}$) and 1-phenyl-3-(p-substituted phenyl)-1H-pyrazole-4-carbaldehyde ($\mathbf{2a-h}$). All compounds were characterized by elemental (C, H, N) analysis and spectral (FT-IR, $^1H$ NMR and GC-MS) analysis. These newly synthesized compounds were screened for their antibacterial and antifungal activities. Antimicrobial activity was observed and evaluated against the bacterial strains like Eschericha coli (MTCC 443), Pseudomonas aeruginosa (MTCC 1688), Staphylococcus aureus (MTCC 96), Streptococcus pyogenes (MTCC 442) and against the fungal strains like Candida albicans (MTCC 227), Aspergillus niger (MTCC 282) and Aspergillus clavatus (MTCC 1323). All the synthesized compounds were found to possess moderate to excellent antimicrobial activity against above selected strains.

Draft Genome Sequence of Alternaria alternata JS-1623, a Fungal Endophyte of Abies koreana

  • Park, Sook-Young;Jeon, Jongbum;Kim, Jung A.;Jeon, Mi Jin;Jeong, Min-Hye;Kim, Youngmin;Lee, Yerim;Chung, Hyunjung;Lee, Yong-Hwan;Kim, Soonok
    • Mycobiology
    • /
    • v.48 no.3
    • /
    • pp.240-244
    • /
    • 2020
  • Alternaria alternata JS-1623 is an endophytic fungus isolated from a stem tissue of Korean fir, Abies koreana. Ethyl acetate extracts of culture filtrates exhibited anti-inflammatory activity in LPS induced microglia BV-2 cell without cytotoxicity. Here we report a 33.67 Mb sized genome assembly of JS-1623 comprised of 13 scaffolds with N50 of 4.96 Mb, and 92.41% of BUSCO completeness. GC contents were 50.97%. Of the 11,197 genes annotated, gene families related to the biosynthesis of secondary metabolites or transcription factors were identified.

Synthesis and Biological Evaluation of Allylamine Type Antimycotics

  • Chung, Soon-Young;Chung, Byung-Ho
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.187.3-188
    • /
    • 2003
  • Structure-activity relationship studies of allylamine type of antimycotics were carried out to evaluate the effect of naphthyl and methyl portion of naftifine. Compounds with 4-fluorphenyl, 2-fluorophenyl, 2,4-dichlorophenyl, 2,6-dichlorophenyl, 4-nitrophenyl, and 2,3-dihydro-benzo[l,4]dioxin-6-yl instead of naphthyl group with hydrogen, methyl, and ethyl in the place of methyl in naftifine were synthesized and tested their in vitro anti-fungal activity against five different fungi. Eight compounds showed significant antifungal activity against T. mentagrophytes. (omitted)

  • PDF

Antibacterial and antifungal effects of Korean propolis against ginseng disease

  • Kim, Sung-Kuk;Woo, Soon Ok;Han, Sang Mi;Bang, Kyeong Won;Kim, Se Gun;Choi, Hong Min;Moon, Hyo Jung;Lee, Sung-Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.39 no.2
    • /
    • pp.82-85
    • /
    • 2019
  • We investigated the anti-microbial activity of propolis against the pathogenic bacteria and fungi on ginseng. We selected six microbials that caused postharvest root rots in ginseng. Propolis extracts were prepared by using the ethanol extraction method. We seeded the bacteria and fungi related to ginseng disease on a specific culture medium, and treated it with propolis extracts by using the paper disc method. Propolis extracts indicate the anti-microbial activity against Paenibacillus polymyxa, Fusarium solani, Rhizoctonia solani AG-1 and Pythium ultimum. However, the anti-fungal activity of propolis is weak on Pseudomonas fluorescens subsp. Cellulosa and Colletotrichum gloeosporioides. As a result, the antimicrobial effects of propolis against microbial that prevent ginseng growth were confirmed. The antimicrobial effects are shown according to the concentration of propolis against root rot. The fungi also showed antibacterial effects in a dose-dependent manner.

Endophytic Diaporthe sp. ED2 Produces a Novel Anti-Candidal Ketone Derivative

  • Yenn, Tong Woei;Ring, Leong Chean;Nee, Tan Wen;Khairuddean, Melati;Zakaria, Latiffah;Ibrahim, Darah
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1065-1070
    • /
    • 2017
  • This study aimed to examine the anti-candidal efficacy of a novel ketone derivative isolated from Diaporthe sp. ED2, an endophytic fungus residing in medicinal herb Orthosiphon stamieus Benth. The ethyl acetate extract of the fungal culture was separated by open column and reverse phase high-performance liquid chromatography (HPLC). The eluent at retention time 5.64 min in the HPLC system was the only compound that exhibited anti-candidal activity on Kirby-Bauer assay. The structure of the compound was also elucidated by nuclear magnetic resonance and spectroscopy techniques. The purified anti-candidal compound was obtained as a colorless solid and characterized as 3-hydroxy-5-methoxyhex-5-ene-2,4-dione. On broth microdilution assay, the compound also exhibited fungicidal activity on a clinical strain of Candida albicans at a minimal inhibitory concentration of $3.1{\mu}g/ml$. The killing kinetic analysis also revealed that the compound was fungicidal against C. albicans in a concentration- and time-dependent manner. The compound was heat-stable up to $70^{\circ}C$, but its anti-candidal activity was affected at pH 2.