• Title/Summary/Keyword: Anti-diabetic effect

Search Result 347, Processing Time 0.026 seconds

Comparison of Antioxidant and ${\alpha}$-Glucosidase Inhibition Activities among Water Extracts and Sugar Immersion Extracts of Green Pepper, Purslane and Shiitake (청고추, 쇠비름, 표고버섯의 물 추출물 및 당침액의 항산화 활성 및 ${\alpha}$-Glucosidase Inhibition 활성 비교)

  • Lee, Sung Mee;Kang, Yun Hwan;Kim, Dae Jung;Kim, Kyoung Kon;Lim, Jun Gu;Kim, Tae Woo;Choe, Myeon
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.24 no.1
    • /
    • pp.101-108
    • /
    • 2014
  • This study was conducted in order to compare the biological activities of water extracts and sugar immersion extracts of green pepper (Capsicum annuum L.), purslane (Portulaca oleracea L.) and shiitake (Lentinula edodes (Berk.) Pegler) by measuring total polyphenol and flavonoid contents, antioxidant activities and inhibitory effects on ${\alpha}$-amylase and ${\alpha}$-glucosidase. The contents of total polyphenols and flavonoids were higher in water extracts than in sugar immersion extracts. The anti-oxidative activities of water and sugar immersion extracts were measured using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging activity assay and reducing power assay. All extracts scavenged radicals in a concentration-dependent manner, and water extracts showed stronger radical scavenging activity and reducing power than sugar immersion extract. However, they all exhibited lower activities than ascorbic acid. Compared to the anti-diabetic drug acarbose, which was used as a positive control, the two types of extracts exhibited low ${\alpha}$-glucosidase inhibitory activities, although the activity of sugar immersion extracts were 2-fold higher than that of water extracts. ${\alpha}$-Amylase inhibitory action was not observed for any of the extracts. Finally, by cytotoxicity test, we confirmed that sugar immersion extracts were safer than water extracts. These results indicate that water extracts and sugar immersion extracts of green pepper, purslane and shiitake have different advantages in terms of their antioxidant and anti-diabetic effects, respectively.

Anti-diabetic effects of aqueous and ethanol extract of Dendropanax morbifera Leveille in streptozotocin-induced diabetes model (Streptozotocin에 의해 유도된 당뇨모델동물에서 황칠나무 (Dendropanax morbifera Leveille)의 열수추출물과 에탄올추출물의 당뇨 질환 개선 효능)

  • An, Na Young;Kim, Ji-Eun;Hwang, DaeYoun;Ryu, Ho Kyung
    • Journal of Nutrition and Health
    • /
    • v.47 no.6
    • /
    • pp.394-402
    • /
    • 2014
  • Purpose: Dendropanax morifera Leveille (DML) exhibits diverse biological and pharmacological activities, including anti-oxidative effect, anti-cancer activity, hepatoprotection, immunological stimulation, and bone regeneration. As part of the identification for novel functions of DML, we investigated the therapeutic effects of DML on diabetes induced by streptozotocine (STZ) treatment. Methods: First, the four extracts including the water extract of leaf (DLW), the ethanol extract of leaf (DLE), the water extract of stem (DSW), and the ethanol extract of stem (DSE) were collected from the leaf and stem of DML using a hot water and ethanol solvent. Alterations in body weight, glucose concentration, insulin level, and pancreatic islet structure were investigated in diabetic mice after treatment with extracts of DML for 2 weeks. Results: Among four extracts, the highest level of total polyphenols and total flavonoids was detected in DLW, while the lowest level of these was measured in DSE. The radical scavenging activity was also higher in DLW than in the other three extracts at the concentration of $25-100{\mu}g/mL$, although this activity was maintained at a constant level in all groups at the concentration of $500{\mu}g/mL$. Based on the results of anti-oxidant activity, DLW and DLE were selected for examination of anti-diabetic effects in a diabetes model. Body weight was gradually decreased in all STZ treated groups compared with the No treated group. However, four STZ/DML treated groups maintained a high level of body weight during 7-14 days, while the STZ/vehicle treated group showed a gradual decrease of body weight during the same period. Also, a significant decrease or increase in the concentration of glucose and insulin in the blood of the diabetes model was detected in a subset of groups, although the highest increase was detected in the STZ/DLE-200 treated group. In addition, the histological structure of pancreatic islet was significantly recovered after treatment with DLW and DLE. Conclusion: These results suggest that DLW and DLE may contribute to attenuation of clinical symptoms of diabetes as well as prevent the destruction of pancreatic ${\beta}$-cells in STZ-induced diabetes mice.

Antioxidant Activities According To Peeling and Cultivated Years of Astragalus membranaceus Roots (황기(Astragalus membranaceus)의 박피 유무와 재배 년 수에 따른 항산화 활성 연구)

  • Goh, Eun-Jeong;Seong, Eun-Soo;Lee, Jae-Geun;Na, Jong-Kuk;Lim, Jung-Dae;Kim, Myong-Jo;Kim, Na-Young;Lee, Gwi-Hyun;Seo, Jung-Sik;Cheoi, Dae-Sung;Chung, Ill-Min;Yu, Chang-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.4
    • /
    • pp.233-237
    • /
    • 2009
  • Astragalus membranaceus has a long history of medicinal use in Chinese herbal medicine. It has been shown to have immunostimulant, tonic, antioxidant, antiperspirant, diuretic, anti-diabetic, expectorant properties, and a supplementary medicine during cancer therapy. In this study, we investigated the effect of anti-oxidation of Astragalus membranaceus root extract. The anti-oxidative activities of water, 80% methanol, and 100% methanol extracts from Astragalus membranaceus were analyzed by DPPH free radical scavenging activity, Superoxide dismutase-like activity, reducing power, and crude ash. The water extract demonstrated to be more effective than methanol extract for a DPPH radicals scavenging activities and reducing power. Superoxide dismutase-like activity showed higher efficiency in 80% methanol extract. Our results indicate that Astragalus membranaceus extracts could be used as a source of antioxidant ingredients in the food industry.

Novel Anti-Angiogenic Activity in Rubus coreanus Miquel Water Extract Suppresses VEGF-Induced Angiogenesis

  • Kim, Eok-Cheon;Kim, Hye Jin;Kim, Tack-Joong
    • Biomedical Science Letters
    • /
    • v.20 no.4
    • /
    • pp.209-220
    • /
    • 2014
  • Vascular endothelial growth factor (VEGF) is a key factor involved in the induction of angiogenesis and has become an attractive target for anti-angiogenesis therapies. The purpose of this study was to elucidate the anti-angiogenic activity of Rubus coreanus Miquel water extract (RCME). Rubus coreanus Miquel has long been employed as a traditional medicine, and recent studies have demonstrated that it has measureable biological activities. Thus, we investigated for the first time the effect of RCME on angiogenesis and its underlying signaling pathways. The effects of RCME were tested on in vitro models of angiogenesis, namely, proliferation, migration, invasion and tube formation of human umbilical vein endothelial cells as well as an ex vivo model of vessel sprouting from the rat aorta in response to VEGF. We observed that VEGF-induced angiogenesis was strongly suppressed by RCME treatment compared to that of the control group. Moreover, we found that RCME inhibited VEGF-induced activation of matrix metalloproteinases and phosphorylation of extracellular signal-regulated kinase and p38, and also effectively inhibited phosphorylation of VEGF receptor 2. These results indicated that RCME inhibits angiogenesis by suppressing phosphorylation of the VEGF receptor and may be useful for the treatment of angiogenesis-dependent diseases such as cancer and diabetic retinopathy.

The Effects in Metabolism and Adipose Tissue Inflammation Induced by the Massa Medicata Fermentata on Obese Type 2 Diabetes Mouse Model (신국(神麯) 투여가 비만형 제 2형 당뇨병 동물모델의 대사인자와 지방조직 염증반응에 미치는 영향)

  • Paik, Sun-Ho;Han, Su-Ryun;Kwon, Oh-Jun;Ahn, Young-Min;Ahn, Se-Young;Lee, Byung-Cheol
    • The Journal of Korean Medicine
    • /
    • v.33 no.3
    • /
    • pp.33-45
    • /
    • 2012
  • Objectives: Recent data have revealed that the plasma concentration of inflammatory mediators is increased in the insulin-resistant states of obesity and type 2 diabetes. The purpose of this study was to investigate the antidiabetic and anti-obesity effect of Massa Medicata Fermentata on obese type 2 diabetes mice. Methods: In order to examine the effects of Massa Medicata Fermentata, obese type 2 diabetes mice induced by Surwit's high fat, high sucrose diet. Mice were divided into 4 groups of ND (normal diet), HFD (high fat and high sucrose diet), Met (high fat and high sucrose diet with metformin) and MMF (high fat and high sucrose diet with Massa Medicata Fermentata) and investigated over 8 weeks. Diabetic and obese clinical markers, including body weight, glucose level, lipid level, leptin concentration, epididymal fat pad and liver weights and adipose tissue macrophage (ATM) were determined. Results: Compared with the HFD group, body weight, fructosamine, triglyceride, epididymal fat pad weight and ATM were significantly reduced in the MMF group. Conclusions: From the above results, the intake of Massa Medicata Fermentata may be effective in anti-hyperglycemia and anti-obesity by the attenuation of glucose and lipid levels and also inflammation state. Massa Medicata Fermentata may be beneficial for controlling diabetes mellitus type 2 in humans.

Qualitative and Quantitative Analysis of Dibenzocyclooctadiene Lignans for the Fruits of Korean "Omija" (Schisandra chinensis) (한국산 오미자로부터 디벤조사이클로옥타디엔 계열 리그난 화합물 정성 및 정량 분석)

  • Kim, Heon Woong;Shin, Jae Hyeong;Lee, Min Ki;Jang, Ga Hee;Lee, Sung Hyeon;Jang, Hwan Hee;Jeong, Seok Tae;Kim, Jung Bong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.5
    • /
    • pp.385-394
    • /
    • 2015
  • Background : Dibenzocyclooctadiene lignans are secondary metabolites present abundantly in the fruits belonging to the genus Schisandra. According to previous studies, Schisandra lignans exhibit anti-inflammatory, anti-cancer and anti-diabetic properties, as well as an inhibitory effect on platelet aggregation. Therefore, establishing the Korean "Omija" (Schisandra chinensis) as a lignan-rich source, in addition to identifying and quantifying the lignans, is extremely valuable. Methods and Results : Dibenzocyclooctadiene lignans were analyzed with liquid chromatography using diode array detection/mass spectrometry, from methanol extracts subsequently identified by a constructed chemical library of 50 lignans. A total of 27 components of lignan including gomisin S were identified, of which schisandrin, gomisin A, gomisin N, deoxyschisandrin, ${\gamma}$-schisandrin, and schisandrin C were identified as the major components in the Korean Omija, Schisandra chinensis. These compounds were divided into two groups, S-biphenyl and R-biphenyl based on the configurations of the stereoisomers structures with contents of 661.7 and 1350.1mg per 100 g dry weight, respectively. The total lignan content averaged 2011.4mg per 100 g dry weight, of which schisandrin and gomisin N comprised the majority (771.8 and 420.5mg per 100 g dry weight respectively). Conclusions : Lignans which are present in high quantities in the ripe fruit of Schisandra chinensis are important functional compounds that play a major role in the prevention and treatment of human diseases.

The Improvement of Chaga Mushroom (Inonotus Obliquus) Extract Supplementation on the Blood Glucose and Cellular DNA Damage in Streptozotocin-Induced Diabetic Rats (Streptozotocin으로 유발한 당뇨쥐에 있어서 차가버섯(Inonotus Obliquus)의 혈당 및 DNA 손상 개선효과)

  • Park, Yoo-Kyoung;Kim, Jung-Shin;Jeon, Eun-Jae;Kang, Myung-Hee
    • Journal of Nutrition and Health
    • /
    • v.42 no.1
    • /
    • pp.5-13
    • /
    • 2009
  • Mushrooms have become a largely untapped source of powerful new pharmaceutical products that poses anti-inflammatory, and antimutagenic, and antioxidant activities. The antioxidant effects of the mushroom may be partly explained by protecting cellular components against free radical. The aim of this study was to investigate the protective effect of chaga mushroom against diabetes, via the mitigation of oxidative stress and reduction of blood glucose, in streptozotocin-induced diabetic rats. Rats were rendered diabetic by intravenous administration of STZ through tail at a dose of 50 mg/kg. Animals were allocated into four groups with 8 rats each. The control and diabetic control group were fed with standard rat feed. The other diabeic groups, the low chaga extract group and the high chaga extract group were fed ad libitum using 0.5 g/kg and 5 g/kg of chaga mushroom extract, respectively, for 4 weeks. The blood glucose levels in the two chaga extract groups showed a tendency to decrease but did not reach statistical significance after the supplementation. Leukocyte DNA damage, expressed as tail length, was found to be significantly lower in the high chaga extract group than in the diabetic control group (p > 0.05). Plasma level of total radical-trapping antioxidant potential (TRAP) was tend to be higher in the high chaga extract group compared with the diabetic control group. Erythrocyte antioxidant enzyme activities of two groups did not differ. Although we did not obtain beneficial effect on lowering blood glucose levels in the STZ-induced diabetic rats, this results suggest that the chaga mushroom extracts may initially act on protecting endogenous DNA damage in the short-term experiment.

Comparison of Antioxidant Activity and ${\alpha}$-Glucosidase Inhibiting Activity by Extracts of Galla rhois

  • Lee, Seung-Hyun;Lee, Sang-Han
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.4
    • /
    • pp.227-232
    • /
    • 2013
  • We studied antioxidant activity and inhibitory effect of ${\alpha}$-glucosidase from aqueous, ethanolic and methanolic fractions of Galla rhois. In FRAP and ORAC assay for measuring antioxidant activity, we confirmed that Galla rhois extracts had strong antioxidant activity and ethanolic and methanolic extracts were relatively stronger than aqueous extract. We used trolox as a positive control. In order to measure the inhibitory effect of ${\alpha}$-glucosidase, we compared acarbose and Galla rhois extracts. As a result of ${\alpha}$-glucosidase inhibitory assay, aqueous, ethanolic and methanolic extracts of Galla rhois showed high inhibitory activitity and ethanolic and methanolic extracts were relatively stronger than aqueous extract. The 50% inhibitory concentrations (IC50s) of acarbose, aqueous, ethanolic and methanolic fractions were 0.45 mM, $0.53{\mu}g/ml$, $0.415{\mu}g/ml$ and $0.37{\mu}g/ml$, respectively. These results suggest that Galla rhois extracts can be a clinically useful anti-diabetic ingredient, indicating that it needs to be fractionated and isolated and should be further investigated.

Effect of ginger extract ingestion on skeletal muscle glycogen contents and endurance exercise in male rats

  • Hattori, Satoshi;Omi, Naomi;Yang, Zhou;Nakamura, Moeka;Ikemoto, Masahiro
    • Korean Journal of Exercise Nutrition
    • /
    • v.25 no.2
    • /
    • pp.15-19
    • /
    • 2021
  • [Purpose] Skeletal muscle glycogen is a determinant of endurance capacity for some athletes. Ginger is well known to possess nutritional effects, such as anti-diabetic effects. We hypothesized that ginger extract (GE) ingestion increases skeletal muscle glycogen by enhancing fat oxidation. Thus, we investigated the effect of GE ingestion on exercise capacity, skeletal muscle glycogen, and certain blood metabolites in exercised rats. [Methods] First, we evaluated the influence of GE ingestion on body weight and elevation of exercise performance in rats fed with different volumes of GE. Next, we measured the skeletal muscle glycogen content and free fatty acid (FFA) levels in GE-fed rats. Finally, we demonstrated that GE ingestion contributes to endurance capacity during intermittent exercise to exhaustion. [Results] We confirmed that GE ingestion increased exercise performance (p<0.05) and elevated the skeletal muscle glycogen content compared to the nonGE-fed (CE, control exercise) group before exercise (Soleus: p<0.01, Plantaris: p<0.01, Gastrocnemius: p<0.05). Blood FFA levels in the GE group were significantly higher than those in the CE group after exercise (p<0.05). Moreover, we demonstrated that exercise capacity was maintained in the CE group during intermittent exercise (p<0.05). [Conclusion] These findings indicate that GE ingestion increases skeletal muscle glycogen content and exercise performance through the upregulation of fat oxidation.

Daraesoon (shoot of hardy kiwi) mitigates hyperglycemia in db/db mice by alleviating insulin resistance and inflammation

  • Ha-Neul Choi;Jung-In Kim
    • Nutrition Research and Practice
    • /
    • v.18 no.1
    • /
    • pp.88-97
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Mitigating insulin resistance and hyperglycemia is associated with a decreased risk of diabetic complications. The effect of Daraesoon (shoot of hardy kiwi, Actinidia arguta) on hyperglycemia was investigated using a type 2 diabetes animal model. MATERIALS/METHODS: Seven-week-old db/db mice were fed either an AIN-93G diet or a diet containing 0.4% of a 70% ethanol extract of Daraesoon, whereas db/+ mice were fed the AIN-93G diet for 7 weeks. RESULTS: Consumption of Daraesoon significantly reduced serum glucose and blood glycated hemoglobin levels, along with homeostasis model assessment for insulin resistance in db/db mice. Conversely, Daraesoon elevated the serum adiponectin levels compared to the db/db control group. Furthermore, Daraesoon significantly decreased both serum and hepatic triglyceride levels, as well as serum total cholesterol levels. Additionally, consumption of Daraesoon resulted in decreased hepatic tumor necrosis factor-α and monocyte chemoattractant protein-1 expression. CONCLUSIONS: These results suggest that hypoglycemic effect of Daraesoon is mediated through the improvement of insulin resistance and the downregulation of pro-inflammatory cytokine expression in db/db mice.