The Improvement of Chaga Mushroom (Inonotus Obliquus) Extract Supplementation on the Blood Glucose and Cellular DNA Damage in Streptozotocin-Induced Diabetic Rats

Streptozotocin으로 유발한 당뇨쥐에 있어서 차가버섯(Inonotus Obliquus)의 혈당 및 DNA 손상 개선효과

  • Park, Yoo-Kyoung (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyunghee University) ;
  • Kim, Jung-Shin (Department of Food and Nutrition, Daedeok Valley Campus, Hannam University) ;
  • Jeon, Eun-Jae (Department of Food and Nutrition, Daedeok Valley Campus, Hannam University) ;
  • Kang, Myung-Hee (Department of Food and Nutrition, Daedeok Valley Campus, Hannam University)
  • 박유경 (경희대학교 동서의학대학원 의학영양학과) ;
  • 김정신 (한남대학교 생명.나노과학대학 식품영양학과) ;
  • 전은재 (한남대학교 생명.나노과학대학 식품영양학과) ;
  • 강명희 (한남대학교 생명.나노과학대학 식품영양학과)
  • Published : 2009.01.31

Abstract

Mushrooms have become a largely untapped source of powerful new pharmaceutical products that poses anti-inflammatory, and antimutagenic, and antioxidant activities. The antioxidant effects of the mushroom may be partly explained by protecting cellular components against free radical. The aim of this study was to investigate the protective effect of chaga mushroom against diabetes, via the mitigation of oxidative stress and reduction of blood glucose, in streptozotocin-induced diabetic rats. Rats were rendered diabetic by intravenous administration of STZ through tail at a dose of 50 mg/kg. Animals were allocated into four groups with 8 rats each. The control and diabetic control group were fed with standard rat feed. The other diabeic groups, the low chaga extract group and the high chaga extract group were fed ad libitum using 0.5 g/kg and 5 g/kg of chaga mushroom extract, respectively, for 4 weeks. The blood glucose levels in the two chaga extract groups showed a tendency to decrease but did not reach statistical significance after the supplementation. Leukocyte DNA damage, expressed as tail length, was found to be significantly lower in the high chaga extract group than in the diabetic control group (p > 0.05). Plasma level of total radical-trapping antioxidant potential (TRAP) was tend to be higher in the high chaga extract group compared with the diabetic control group. Erythrocyte antioxidant enzyme activities of two groups did not differ. Although we did not obtain beneficial effect on lowering blood glucose levels in the STZ-induced diabetic rats, this results suggest that the chaga mushroom extracts may initially act on protecting endogenous DNA damage in the short-term experiment.

최근 당뇨환자에게서 산화적 손상이 증가됨이 보고되면서 항산화식품의 섭취를 통한 DNA 손상 개선노력이 다각도로 시도되고 있다. 차가버섯을 비롯한 여러 가지 버섯류에 항산화활성 및 혈당강하 효과가 있음이 알려지고 있으므로 본 연구에서는 streptozotocin (STZ) 유발 당뇨쥐를 사용하여 차가버섯에 항산화 효과 및 DNA 손상 억제효과가 있는지, 그리고 이런 항산화효과가 당뇨쥐의 혈당을 감소시키는지를 알아보았다. Sprague-dawley종 수컷 흰쥐(4주령, $110{\pm}6\;g$) 32마리를 대조군, 당뇨군, 저농도 차가버섯투여군 (0.5 g/kg BW) 및 고동도 차가버섯투여군 (5 g/kg BW) 등 4군으로 나누어 동물실험을 진행하였으며, 꼬리 정맥에 STZ을 주사하여 당뇨를 유발시킨 후 4주간 사육하였다. 4주 후에 혈액과 간을 채취하여 혈장 glucose, 혈장 총항산화능 (total radical-trapping antioxidant potential, TRAP) 수준 및 ${\alpha}$-tocopherol 수준, 적혈구 catalase, superoxide dismutase (SOD), 및 glutathione peroxidase (GSH-Px)의 활성도, 그리고 임파구 및 간조직의 DNA 손상 정도를 comet assay로 측정하였다. 실험 결과, 대조군에 비해 당뇨군에서 혈당이 상승하고 (p < 0.05) 혈장 TRAP 수준은 감소하였으며 (p < 0.05) 임파구의 DNA 손상은 증가하였고 (p < 0.05) 나머지 지표들은 차이가 나타나지 않았다. 당뇨군에 비해 저농도 및 고농도 차가버섯 투여군들에서 혈당이 감소하는 경향이 있었고 혈장 TRAP 수준과 ${\alpha}$-tocopherol 수준이 증가하는 경향을 보였으나 모두 유의적인 차이는 아니었으며, 당뇨군에 비해 차가버섯 투여군에서 tail length로 본 임파구 DNA 손상 정도가 유의적으로 감소하였다 (p < 0.05). 나머지 지표들은 당뇨군과 차가버섯 투여군들 간에 차이를 보이지 않았다. 본 연구결과, 차가버섯 열수추출물을 고농도 (5 g/kg BW)로 4주 동안 당뇨유발 흰쥐에게 투여하였을 때 혈당강하 효과는 유의적으로 나타나지 않았으나 당뇨로 인해 유발 된 DNA 손상정도가 정상수준까지 뚜렷하게 감소함을 관찰하였으며 이를 통해 부분적으로 차가버섯의 항산화 효과를 관찰할 수 있었다. 이와 같은 결과는 앞으로 차가버섯을 이용하여 당뇨환자의 DNA손상을 개선시키기 위한 건강기능식품 개발 연구에 활용될 수 있을 것으로 생각된다.

Keywords

References

  1. Zheng WF, Liu T, Xiang XY, Gu Q. Sterol composition in field-grown and cultured mycelia of Inonotus obliquus. Yao Xue Xue Bao 2007; 42(7): 750-756
  2. Saar M. Fungi in Khanty folk medicine. J Ethnopharmacol 1991;31(2): 175-179 https://doi.org/10.1016/0378-8741(91)90003-V
  3. Mizuno T, Zhuang C, Abe K, Okamoto H, Kiho T, Ukai S, Leclere S, Meijer L. Antitumor and hypoglycemic activities of polysaccharides from the sclerotia and mycelia of Inonotus obliquus (Per.: Fr.) Pil. (Aphyllophoromycetidae), International Journal of Medicinal Mushrooms 1999; 1: 301-316
  4. Shin YS, Tamai Y, Terazawa M, Chemical constituents of Inonotus obliquus I. A new triterpene, 3h-hydroxy-8, 24-dienlanosta-21, 23-lactone from sclerotium. Eurasian Journal of Forest Research 2000; 1: 43-50
  5. Solomon PW, Alexander LW. Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Immunology 1999; 19: 65-96 https://doi.org/10.1007/BF02786477
  6. Kahlos K. Antifungal activity of cysteine, its effect on C-21 oxygenated lanosterol derivatives and other lipid in Inonotus obliquus, in vitro. Appl Microbiol Biotechnol 1994; 3: 339-385
  7. Ichimura T, Otake T, Mori H, Maruyama S. HIV-1 protease inhibition and anti-HIV effect of natural and syntheticwater-soluble lignin-like substance. Biosci Biotech Biochem 1999; 63: 2202-2204 https://doi.org/10.1271/bbb.63.2202
  8. Cui Y, Kim DS, Park KC. Antioxidant effect of Inonotus obliquus. J Ethnopharmacol 2005; 96: 79-85 https://doi.org/10.1016/j.jep.2004.08.037
  9. Kahlos K, Kangas L, Hiltunen R. Antitumor activity of some compounds and fractions from an n-hexane extract of Inonotus obliquus. Acta Pharmaceutica Fennica 1987; 96: 33-40
  10. Kim YO, Park HW, Kim JH, Lee JY, Moon SH, Shin CS. Anticancer effect and structural characterization of endo-polysaccharide from cultivatedmycelia of Inonotus obliquus. Life Sci 2006;79: 72-80 https://doi.org/10.1016/j.lfs.2005.12.047
  11. Nakajima Y, Sato Y, Konishi T. Antioxidant small phenolic ingredients in Inonotus obliquus (persoon) Pilat (Chaga). Chem Pharm Bull (Tokyo) 2007; 55: 1222-1226 https://doi.org/10.1248/cpb.55.1222
  12. Zheng W, Zhang M, Zhao Y, Wang Y, Miao K, Wei Z. Accumulation of antioxidant phenolic constituents in submerged cultures of Inonotus obliquus. Bioresour Technol 2009; 100(3): 1327-1335 https://doi.org/10.1016/j.biortech.2008.05.002
  13. Ceriello A. Oxidative stress and glycemic regulation. Metabolism 2000; 49: 27-29 https://doi.org/10.1016/S0026-0495(00)80082-7
  14. Karasu C. Increased activity of H2O2 in aorta isolated from chronically streptozotocin diabetic rats: Effects of antioxidant enzymes and enzyme inhibitors. Free Radic Biol Med 1999; 27:16-27 https://doi.org/10.1016/S0891-5849(99)00028-3
  15. Bhor VM, Raghuram N, Sivakami S. Oxidative damage and altered antioxidant enzyme activities in the small intestine of streptozotocin-induced diabetic rats. Int J Biochem Cell Biol 2004; 36(1): 89-97 https://doi.org/10.1016/S1357-2725(03)00142-0
  16. Collins AR, Raslova K, Somorovska M, Petrovska H, Ondrusova A, Vohnout B, Fabry R, Dusinska M. DNA damage in diabetes: correlation with a clinical marker. Free Radic Biol Med 1998; 25(3): 373-377 https://doi.org/10.1016/S0891-5849(98)00053-7
  17. Dandona P, Thusu K, Cook S, Snyder B, Makowski J, Armstrong D, Nicotera T. Oxidative damage to DNA in diabetes mellitus. Lancet 1996; 347(8999): 444-445 https://doi.org/10.1016/S0140-6736(96)90013-6
  18. Hinokino Y, Suziki S, Hirai M, Chiba M, Hirai A, Toyota T. Oxidative DNA damage in diabetes mellitus: Its association with diabetic complications. Diabetologia 1999; 42: 995-998 https://doi.org/10.1007/s001250051258
  19. Park KS, Kim JH, Kim MS, Kim JM, Kim SK, Choi JY, Chung MH, Han B, Kim SY, Lee HK. Effects of insulin and antioxidant on plasma 8-hydroxyguanine and tissue 8-hydroxydeoxyguanosine in streptozotocin-induced diabetic rats. Diabetes 2001; 50:2837-2841 https://doi.org/10.2337/diabetes.50.12.2837
  20. Ramon O, Wong HK, Joyeux M, et al. 2-Deoxyguanosine oxidation is associated with decrease in DNA-binding activity of transcription factor Sp1 in liver and kidney from diabetic and insulinresistant rats. Free Radic Biol Med 2001; 30: 107-118 https://doi.org/10.1016/S0891-5849(00)00451-2
  21. Ha AW, Kim HM. The study of lipid-peroxidation, antioxidant enzymes, and the antioxidant vitamins in NIDDM patients with microvascular-diabetic complications. Korean J Nutr 1999; 32 (10): 17-23
  22. Park KY, Park SB, Kim HC, Mun KC, Kwak CS, Kang MJ. Correlation between levels of serum creatinine and erythrocytic malondialdehyde (MDA) and antioxidant enzymes in patients with diabetic nephropathy. Korean J Nephrology 1997; 16(3): 482-487
  23. Park YK, Lee HB, Jeon EJ, Jung HS, Kang MH. Chaga mushroom extract inhibits oxidative DNA damage in human lymphocytes as assessed by comet assay. Biofactors 2004; 21(1-4): 109-112 https://doi.org/10.1002/biof.552210120
  24. Reeves PG, Nielsen FH, Fahey GC Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 1993; 123(11): 1939-1951
  25. Rice-Evans C, Miller N. Total antioxidant status in plasma and body fluids. Methods Enzymol 1994; 234: 279-293 https://doi.org/10.1016/0076-6879(94)34095-1
  26. Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and convenient assay for superoxide dismutase. Eur J Biochem 1974; 47: 469-474 https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  27. Beutler E. Glutatione peroxidase. In: Red cell metabolism: A mannual for biochemical methods, Verlag Grune and Straton. New York; 1984. p.71-73
  28. Aebi H. Catalase. In: Bergmeyer HU, ed. Methods of enzymatic analysis. Weinheim: Verlag Chemie; 1974. p.673-678
  29. Singh PN, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 1988; 175: 184-191 https://doi.org/10.1016/0014-4827(88)90265-0
  30. Eddouks M, Maghrani M, Michel JB. Hypoglycaemic effect of Triticum repens P. Beauv in normal and diabetic rats. J Ethnopharmacol 2005; 102: 228-232 https://doi.org/10.1016/j.jep.2005.06.019
  31. Wasser SP, Weis AL. Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Crit Rev Immunol 1999; 19(1): 65-96
  32. Kahlos K, Lesnau A, Lange W, Lindequist U. Preliminary tests of antiviral activity of two Inonotus obliquus strains. Fitoterapia 1996; 6: 344-347
  33. Klinger W, Hirschelmann, Suss J. Birch sap and birch leaves extract: Screening for antimicrobial, phagocytosis-influencing, antiphlogistic and antipuretic activity. Pharmazie 1989; 44: 558-560
  34. Hwang Y, Noh G, Kim S. Effect of Inonotus obliquus extracts on rpoliferation and caspase-3 activity in human gastro-intestinal cancer cell lines. Korean J Nutr 2003; 36: 18-23
  35. Ham S, Oh S, Kim Y, Shin K, Chang H, Chung G. Antimutagenic and cytotoxic effects of ethanol extract from the Inonotus obliquus. J Korean Soc Food Sci Nutr 2003; 32: 1088-1094
  36. Ham S, Oh S, Kim Y, Shin K, Chang H, Chung G. Antioxidant and genotoxic inhibition activity of ethanol extract from the Inonotus obliquus. J Korean Soc Food Sci Nutr 2003; 32: 1071-1075
  37. Sun JE, Ao ZH, Lu ZM, Xu HY, Zhang XM, Dou WF, Xu ZH. Antihyperglycemic and antilipidperoxidative effects of dry matter of culture broth of Inonotus obliquus in submerged culture on normal and alloxan-diabetes mice. J Ethnopharmacol 2008; 118 (1): 7-13 https://doi.org/10.1016/j.jep.2008.02.030
  38. Song HS, Lee YJ, Kim SK, Moon WK, Kim DW, Kim YS, Moon KY. Down regulatory effect of AGI-1120 (-glucosidase inhibitor) and Chaga mushroom (Inonotus obliquus) on cellular NF-B activation and their antioxidant activity. Korean J Pharmacognosy 2004; 35: 92-97
  39. Fidan AF, Yılmaz Dundar Y. The effects of Yucca schidigera and Quillaja saponaria on DNA damage, protein oxidation, lipid peroxidation, and some biochemical parameters in streptozotocin-induced diabetic rats. J Diabetes Complications 2008; 22: 348-356 https://doi.org/10.1016/j.jdiacomp.2007.11.010
  40. Andican G, Burcak G. Oxidative damage to nuclear DNA in streptozotocin-diabetic rat liver. Clin Exp Pharmacol Physiol 2005;32: 663-666 https://doi.org/10.1111/j.0305-1870.2005.04247.x
  41. Imaeda A, Kanekob T, Aokia T, Kondoc Y, Nagased H. DNA damage and the effect of antioxidants in streptozotocin-treated mice. Food Chem Toxicol 2002; 40: 979-987 https://doi.org/10.1016/S0278-6915(02)00014-5
  42. Park EJ, Kim JS, Jeon EJ, Kim HY, Par YK, Kang MH. The effects of purple grape juice supplementation on improvement of antioxidant status and lymphocyte DNA damage in Korean smokers. Korean J Nutr 2004; 37(4): 281-290