• 제목/요약/키워드: Anti-bacterial study

검색결과 453건 처리시간 0.03초

A Study on the Functionality in Natural Colorants

  • Song, Eun-Young;Ahn, In-Yong;Suh, Hwa-Jin;Kim, Mi-Jin;Park, Jin-Woo;Kwon, Oh-Oun
    • 한국염색가공학회:학술대회논문집
    • /
    • 한국염색가공학회 2012년도 제46차 학술발표회
    • /
    • pp.122-122
    • /
    • 2012
  • The aims of this study were to examine the efficacy of phytochemical compounds of colorants as anti-oxidant agent. The bioactive properties of natural colorants were studied by total phenolic contents, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and anti-bacterial activity in Escherichial coli. The concentration ($IC_{50}$) of various extracts from colorants required to exert 50% reducing effect on DPPH radical were found to be 0.007-4 mg/ml. Especially, the gallnut (Schlectendalia Chinensis) displayed remarkable effect of DPPH as compared to positive control ascorbic acid. The total phenolic contents (TPC) and restraint of E coli. also analyzed. It was found that gallnut extracts effectively inhibited DPPH radical at a concentration below 0.01 mg/ml. Natural colorant extracts could be of good resources as anti-oxidant and anti-bacterial agents. The results suggest that our study may contribute to the development of natural and functional materials with potential application to reduce oxidative damage.

  • PDF

일부 살충해독유(殺蟲解毒類) 한약의 Staphylococcus aureus에 대한 시험관 내 항균 및 항염 효과 (In Vitro Anti-bacterial and Anti-inflammatory Effects of Six Types of Herb Aqueous Extracts)

  • 장세란;김동철
    • 대한한방부인과학회지
    • /
    • 제27권1호
    • /
    • pp.81-100
    • /
    • 2014
  • Objectives: The object of this study was to observe the in vitro anti-bacterial and anti-inflammatory effects of six single aqueous herbal extracts-Quisqualis Fructus (QuF), Meliae Cortex (MeC), Arecae Semen (ArS), Crassirhizomae Rhizoma (CrR), Ulmi Pasta Semen(UlS), Torreyae Semen(ToS)- against Staphylococcus aureus (S. aureus) and Lipopolysaccharide(LPS)-activated Raw 264.7 cells. Methods: Anti-bacterial activities against S. aureus of aqueous extracts of QuF, MeC, ArS, CrR, UlS and ToS were detected using standard agar microdilution methods. In addition, the effects on the cell viability, prostaglandin $E_2$ ($PGE_2$), nitric oxide (NO), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin (IL)-$1{\beta}$ and IL-6 productions of LPS activated Raw 264.7 cells were detected. The anti-bacterial and anti-inflammatory effects were respectively compared with lincomycin and piroxicam. Results: Minimal Inhibition Concentration (MIC) of aqueous extracts of QuF, MeC, ArS, CrR, UlS and ToS against S. aureus was respectively detected $5.625{\pm}4.075$ (3.125~12.500), $0.332{\pm}0.273$ (0.098~0.782), $1.094{\pm}0.428$ (0.782~1.563), $2.969{\pm}2.096$ (0.782~6.250), $9.375{\pm}4.419$ (3.125~12.500)>25 mg/ml. MIC of lincomycin was detected as $0.469{\pm}0.297$ (0.195~0.782) ${\mu}g/ml$ at same conditions. In addition, $ED_{50}$ against LPS-induced cell viabilities and cytokine releases of QuF, MeC, ArS, CrR, UlS and ToS was as follows - Cell viability: 66.370, 2.908, 1.747, 259.553, 18.150 and 34.160 mg/ml; NO production: 389.486, 0.294, 0.138, 523.060, 45.363 and 49.327 mg/ml; $PGE_2$ production: 114.271, 0.223, 0.046, 243.078, 8.829 and 28.947 mg/ml; TNF-${\alpha}$ production: 406.288, 0.343, 0.123, 9404.227, 125.406 and 140.775 mg/ml; IL-$1{\beta}$ production: 117.178, 0.135, 0.019, 237.451, 7.923 and 19.418 mg/ml; IL-6 production: 31.261, 0.105, 0.055, 128.434, 2.290 and 3.745 mg/ml. ED50 of piroxicam against LPS-induced cell viabilities, NO, $PGE_2$, TNF-${\alpha}$, IL-$1{\beta}$ and IL-6 were detected as 35.179, 6.552, 1.162, 7.273, 7.101 and $5.044{\mu}g/ml$, respectively at same conditions. Conclusions: All six single aqueous herbal extracts showed anti-bacterial effects against S. aureus, in the order of MeC, ArS, CrR, QuF and UlS aqueous extracts except for ToS; they did not showed any anti-bacterial effects (MIC>25 mg/ml). They also showed anti-inflammatory effects against LPS-activated Raw 264.7 cells in the order of ArS, MeC, UlS, ToS, QuF and CrR aqueous extracts. It means that the ArS and MeC will be showed favorable potent anti-bacterial and related anti-inflammatory effects.

Effects of Lactobacillus casei and Aggregatibactor actinomycetemcomitans against Streptococcus mutans according to the Concentration of Sucrose

  • Soon-Jeong Jeong
    • 치위생과학회지
    • /
    • 제23권2호
    • /
    • pp.103-111
    • /
    • 2023
  • Background: Some studies confirm the reduction of the number of Streptococcus mutans in saliva and dental plaque by Lactobacillus, however, these effects are not always confirmed in in vitro and clinical studies, and only the risk of dental caries has been reported. Our in vitro study aimed to reveal microbial and biochemical changes in the single cultures of S. mutans, Lactobacillus casei and Aggregatibactor actinomycetemcomitans and co-cultures of S. mutans and L. casei or A. actinomycetemcomitans according to sucrose concentration. We also aimed to confirm the anti-oral bacterial and anti-biofilm activities of L. casei and A. actinomycetemcomitans against S. mutans according to sucrose concentration. Methods: S. mutans (KCCM 40105), L. casei (KCCM 12452), and A. actinomycetemcomitans (KCTC 2581) diluted to 5×106 CFU/ml were single cultured, and L. casei or A. actinomycetemcomitans applied at concentrations of 10%, 20%, 30% and 40% to S. mutans were co-cultured with selective medium containing 0%, 1% and 5% sucrose at 36.5℃ for 24 hours. Measurements of bacterial growth value and acid production, disk diffusion and biofilm formation assays were performed. Results: In the medium containing sucrose, the bacterial growth and biofilm formation by S. mutans, L. casei, and A. actinomycetemcomitans were increased. In contrast, 30% and 40% of L. casei in the medium containing 0% sucrose showed both anti-oral bacterial and anti-biofilm activities. This implies that L. casei can be used as probiotic therapy to reduce S. mutans in a 0% sucrose environment. Conclusion: The concentration of sucrose in the oral environment is important for the control of pathogenic bacteria that cause dental caries and periodontitis. To apply probiotic therapy using L. casei for S. mutans reduction, the concentration of sucrose must be considered.

Anti-Oral Microbial Effect of Ethanol Extract of Angelica gigas Nakai

  • Soon-Jeong Jeong
    • 치위생과학회지
    • /
    • 제24권1호
    • /
    • pp.54-61
    • /
    • 2024
  • Background: The Korean name for Angelica gigas Nakai (AGN) is Cham-dang-gui, which grows naturally or is cultivated, and its dried roots are used in traditional herbal medicines. The AGN root exert various pharmacological effects. Despite the various pharmacological effects of the AGN root, there are no reports on its anti-oral microbial effects. The purpose of this study was to reveal the anti-oral microbial effect and the microbial and biochemical changes in oral microorganisms according to the concentration of the ethanol extract of AGN (EAGN) root, and to confirm the possibility of using EAGN as a plant-derived functional substance for controlling oral infectious microorganisms. Methods: Disk diffusion test, growth measurement, biofilm formation assay, and measurements of acid production and buffering capacity were performed to confirm the antibacterial effect of EAGN. Results: EAGN showed anti-oral bacterial effects against Streptococcus mutans and Aggregatibacter actinomycetemcomitans at all concentrations, with S. mutans showing a more susceptible effect at concentrations above 5.0 mg/ml and A. actinomycetemcomitans at 3.75 mg/ml. EAGN treatment significantly reduced A. actinomycetemcomitans growth at all concentrations tested. Biofilm formation was significantly reduced at concentrations above 3.75 mg/ml for S. mutans and 2.5 mg/ml for A. actinomycetemcomitans. Acid production in S. mutans and A. actinomycetemcomitans was significantly increased by treatment with EAGN, and the buffering capacities of S. mutans and A. actinomycetemcomitans increased from an EAGN concentration of 3.75 mg/ml and above. Conclusion: EAGN showed anti-oral bacterial effects against both S. mutans and A. actinomycetemcomitans at concentrations above 3.75 mg/ml, which were thought to be related to the inhibition of their growth and biofilm formation. Therefore, EAGN can be used as a safe functional substance derived from medicinal plants owing to its antibacterial effects against S. mutans and A. actinomycetemcomitans.

은나노 입자가 첨착된 활성탄의 항균특성에 관한 연구 (Study of Anti-bacterial Properties for Impregnated Activated Carbon by Silver Nano-particles)

  • 이철재;김동엽;김병소
    • 공업화학
    • /
    • 제18권4호
    • /
    • pp.396-399
    • /
    • 2007
  • 본 연구에서는 질산은 용액을 감마선 조사에 의하여 은나노 입자를 제조한 후, 이것을 활성탄과 혼합하여 은/활성탄 복합체를 제조하여 대장균에 대한 항균특성을 조사하였다. 제조된 은/활성탄 복합체의 특성은 주사전자현미경, X-선 회절법 그리고 원자흡수분광법에 의해 알아보았다. 은/활성탄 복합체의 대장균에 대한 억제농도는 0.387 ppm으로 나타났으며 대장균에 대한 사멸농도는 1.017 ppm이었다. 이 결과로 은/활성탄 복합체의 대장균에 대한 우수한 항균효과를 확인할 수 있었다.

소 결핵균의 면역세포화학적 동정 (Immunocytochemical identification of Mycobacterium bovis in tissues)

  • 김순복;서정향;문운경
    • 대한수의학회지
    • /
    • 제33권1호
    • /
    • pp.119-123
    • /
    • 1993
  • The present study was intended to use the avidin-biotin-peroxidase-antiperoxidase complex (ABPAP) method for the identification of Mycobacterium bovis in the tissue sections of infected cattle. Antibodies and linksera for ABPAP procedure used in incubated order were rabbit anti-Mycobacterium polyvalent antibodies, goat anti-rabbit IgG, rabbit peroxidase-antiperoxidase complex, biotinyl-horse anti-rabbit IgG, and avidin-biotin-peroxidase complex. Where the bacterial antigen was localized by ABPAP, a dark brown deposit occurred in the cytoplasms of macrophages and Langerhans' giant cells of the granulomatous lesions. The method approved to be highly specific for the identification of the bacteria and allowed a precise localization of the bacterial antigen in infected cells.

  • PDF

대황(Eisenia bicyclis) 추출액의 항산화 및 항염증 활성에 대한 유산균 발효의 영향 (Effects of Lactic Acid Bacterial Fermentation on the Antioxidant and Anti-inflammatory Activity of Brown Algae Eisenia bicyclis Extract)

  • 한해나;엄성환;김지훈;김덕훈;김송희;김윤혜;염승목;김영목
    • 한국수산과학회지
    • /
    • 제48권2호
    • /
    • pp.151-157
    • /
    • 2015
  • This study was conducted to evaluate the effect of lactic acid bacterial fermentation on the antioxidant and anti-inflammatory activity of an edible brown alga, Eisenia bicyclis. Lactic acid bacteria were inoculated into and cultivated in E. bicyclis water extract. The antioxidant activity of the extract was assayed before and following fermentation. Antioxidant activity was determined by assaying the levels of radical scavenging activity against 2,2'-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl radical and alkyl radical. The lactic acid bacterial fermentation of E. bicyclis extract resulted in enhanced antioxidant activity. The greatest enhancement of antioxidant activity was seen in the DPPH radical scavenging assay, in which E. bicyclis extract was fermented by Pediococcus pentosaceus MBP-34 strain for 12 h. This fermented extract also exhibited higher inhibitory activity (96.66%) on nitric oxide production compared with other lactic acid bacterial fermented extracts or raw extract (189.60%). In conclusion, fermentation by bacterial strain is an attractive strategy for developing value-added food ingredients.

Antimicrobial resistance in Klebsiella pneumoniae: identification of bacterial DNA adenine methyltransferase as a novel drug target from hypothetical proteins using subtractive genomics

  • Umairah Natasya Mohd Omeershffudin;Suresh Kumar
    • Genomics & Informatics
    • /
    • 제20권4호
    • /
    • pp.47.1-47.13
    • /
    • 2022
  • Klebsiella pneumoniae is a gram-negative bacterium that is known for causing infection in nosocomial settings. As reported by the World Health Organization, carbapenem-resistant Enterobacteriaceae, a category that includes K. pneumoniae, are classified as an urgent threat, and the greatest concern is that these bacterial pathogens may acquire genetic traits that make them resistant towards antibiotics. The last class of antibiotics, carbapenems, are not able to combat these bacterial pathogens, allowing them to clonally expand antibiotic-resistant strains. Most antibiotics target essential pathways of bacterial cells; however, these targets are no longer susceptible to antibiotics. Hence, in our study, we focused on a hypothetical protein in K. pneumoniae that contains a DNA methylation protein domain, suggesting a new potential site as a drug target. DNA methylation regulates the attenuation of bacterial virulence. We integrated computational-aided drug design by using a bioinformatics approach to perform subtractive genomics, virtual screening, and fingerprint similarity search. We identified a new potential drug, koenimbine, which could be a novel antibiotic.

Curcumin utilizes the anti-inflammatory response pathway to protect the intestine against bacterial invasion

  • Cho, Jin Ah;Park, Eunmi
    • Nutrition Research and Practice
    • /
    • 제9권2호
    • /
    • pp.117-122
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Curcumin, a major component of the Curcuma species, contains antioxidant and anti-inflammatory properties. Although it was found to induce apoptosis in cancer cells, the functional role of curcumin as well as its molecular mechanism in anti-inflammatory response, particularly in intestinal cells, has been less investigated. The intestine epithelial barrier is the first barrier and the most important location for the substrate coming from the lumen of the gut. SUBJECTS/METHODS: We administered curcumin treatment in the human intestinal epithelial cell lines, T84 and Caco-2. We examined endoplasmic reticulum (ER) stress response by thapsigargin, qPCR of XBP1 and BiP, electrophysiology by wild-type cholera toxin in the cells. RESULTS: In this study, we showed that curcumin treatment reduces ER stress and thereby decreases inflammatory response in human intestinal epithelial cells. In addition, curcumin confers protection without damaging the membrane tight junction or actin skeleton change in intestine epithelial cells. Therefore, curcumin treatment protects the gut from bacterial invasion via reduction of ER stress and anti-inflammatory response in intestinal epithelial cells. CONCLUSIONS: Taken together, our data demonstrate the important role of curcumin in protecting the intestine by modulating ER stress and inflammatory response post intoxication.

한방목초액의 항산화 및 항 아토피 효과 (Anti-oxidation and Anti-atopic Dermatitis Effect of Herbal Wood Vinegar)

  • 김타곤;노화정;전상희;김강배;김동욱
    • Korean Chemical Engineering Research
    • /
    • 제48권6호
    • /
    • pp.690-694
    • /
    • 2010
  • 본 연구에서는 대나무, 계피, 생강 등 8종의 한약재를 포함한 한방목초액의 소재특성을 시험하여 화장품 및 피부질 환용 의약품에의 응용가능성을 조사하였다. 목초액의 항산화력은 DPPH 자유라디칼 소거법으로 측정되었으며 $50{\mu}g/ml$의 농축목초액 농도에서 97%의 매우 높은 항산화능을 보여주었다. 목초액의 항균력은 원판확산법으로 시험되었으며, 피부상재균인 Staphylococcus aureus에 대해 우수한 항균력을 보여주었다. 목초액의 미백효과는 tyrosinase 활성억제시험법으로 측정되었으며 대조군인 비타민 C에 비해 매우 낮아서 미백효과는 미미하였다. 목초액의 안전성 시험은 MTT assay에 의해 측정되었으며, 세포 독성이 비교적 높은 것으로 나타났다. 목초액의 화장품소재 안정성 시험 결과 색, 향, 외관 및 pH에서 큰 변화가 없어서 매우 안정하였다. 무모생쥐를 이용한 항 아토피 시험결과, 목초액은 DNCB에 의해 유도된 피부염증을 9일 째 거의 정상상태로 회복시켰으며, 피부내 IgE의 농도도 대조군에 비해 30% 감소시켜 항 아토피 효과가 우수한 것으로 나타났다. 따라서 목초액은 항산화력, 항균력 및 항 아토피 효과가 우수하여 화장품소재나 피부질환치료제로서의 응용 가능성이 큼을 알 수 있었다.