• Title/Summary/Keyword: Anti-Air Missile

Search Result 36, Processing Time 0.039 seconds

3-D Optimal Evasion of Air-to-Surface Missiles against Proportionally Navigated Defense Missiles

  • Cho, Sung-Bong;Ryoo, Chang-Kyung;Tahk, Min-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.514-518
    • /
    • 2003
  • In this paper, we investigate three dimensional optimal evasive maneuver patterns for air-to-surface attack missiles against proportionally navigated anti-air defense missiles. Interception error of the defense missile can be generated by evasive maneuver of the attack missile during the time of flight for which the defense missile intercepts the attack missile. Time varying weighted sum of the inverse of these interception errors forms a performance index to be minimized. Direct parameter optimization technique using CFSQP is adopted to get the attack missile's optimal evasive maneuver patterns according to parameter changes of both the attack missile and the defense missile such as maneuver limit and time constant of autopilot approximated by the 1st order lag system. The overall shape of resultant optimal evasive maneuver to enhance the survivability of air-to-surface missiles against proportionally navigated anti-air missiles is a kind of deformed barrel roll.

  • PDF

A Study on Optimal Operation against Anti-Air Missiles with Consideration of Anti-Surface Missile Kill Probability (대함유도탄 요격 확률을 고려한 함정 대공방어유도탄의 최적 운용 연구)

  • Park, Hyeonwoo;Lee, Hanmin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.815-823
    • /
    • 2019
  • A naval surface-to-air missile is an effective countermeasure against increasing threats of anti-ship missiles. Optimal operation is imperative for high survivability due to limited defense resources of a warship. This paper addresses a problem of optimal engagement to maximize the overall probability of intercept under Shoot-Look-Shoot tactics. The problem is formulated and analyzed with consideration of a realistic single-shoot probability model. The analysis shows that a global solution is achieved for some engagement scenarios. A numerical algorithm to optimize the overall probability of intercept is suggested. An illustrative example is provided to verify our results.

Defense Strategy against Multiple Anti-Ship Missiles using Anti-Air Missiles (다수 대함유도탄에 대한 함정의 대공방어유도탄 운용기법 연구)

  • Kim, Do-Wan;Yun, Joong-Sup;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.354-361
    • /
    • 2011
  • In this paper, an efficient defense strategy of single naval ship using short range anti-air missiles against the threat of multiple anti-ship missiles is suggested. The defense logic is based on the estimated future trajectory of anti-ship missiles by using current radar information. The logic is designed to maximize the range of interception of anti-ship missiles so that the chance of interception can be increased although the prior tries turn out to be fail. Basically, the decision making for the allocation of a defense missile is achieved by comparing the total kill probability and the estimated intercepting point. Performance of the proposed logic is investigated by nonlinear planar numerical simulations.

Optimal Interface Design between Short-Range Air Defense Missile System and Dissimilar Combat Systems (단거리 대공방어유도탄체계와 이기종 함정 전투체계간 최적의 연동 설계 기법)

  • Park, Hyeon-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.260-266
    • /
    • 2015
  • The warship is run based on the combat system which shares tactical information collected by target detection systems and navigation devices across a network, and conducts the command and control of weapons from target detection to kill assessment. The short-range air defense missile system defends a warship from anti-ship missiles, aircraft, helicopter and other threats in order to contribute to the survival of a warship and the success of missions. The short-range air defense missile system is applied to a various combat systems. In this paper, we have proposed the interface design between the short-range air defense missile and dissimilar combat systems. To employ the short-range air defense missile at dissimilar combat systems, each system is driven by independent processor, and the tasks which are performed by each system are assigned. The information created by them is exchanged through the interface, and the flow of messages is designed.

The Optimal Deployment Problem of Air Defense Artillery for Missile Defense (미사일 방어를 위한 방공포대 최적 배치 문제)

  • Kim, Jae-Kwon;Seol, Hyeonju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.98-104
    • /
    • 2016
  • With the development of modern science and technology, weapon systems such as tanks, submarines, combat planes, radar are also dramatically advanced. Among these weapon systems, the ballistic missile, one of the asymmetric forces, could be considered as a very economical means to attack the core facilities of the other country in order to achieve the strategic goals of the country during the war. Because of the current ballistic missile threat from the North Korea, establishing a missile defense (MD) system becomes one of the major national defense issues. This study focused on the optimization of air defense artillery units' deployment for effective ballistic missile defense. To optimize the deployment of the units, firstly this study examined the possibility of defense, according to the presence of orbital coordinates of ballistic missiles in the limited defense range of air defense artillery units. This constraint on the defense range is originated from the characteristics of anti-ballistic missiles (ABMs) such as PATRIOT. Secondly, this study proposed the optimized mathematical model considering the total covering problem of binary integer programming, as an optimal deployment of air defense artillery units for defending every core defense facility with the least number of such units. Finally, numerical experiments were conducted to show how the suggested approach works. Assuming the current state of the Korean peninsula, the study arbitrarily set ballistic missile bases of the North Korea and core defense facilities of the South Korea. Under these conditions, numerical experiments were executed by utilizing MATLAB R2010a of the MathWorks, Inc.

Guidance Scheme for Air-to-Ground Anti-tank Missiles Under Physical Constraints (물리적 구속조건을 고려한 공대지 대전차 유도탄의 유도기법 연구)

  • Park, Bong-Gyun;Um, Tae-Yoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.145-152
    • /
    • 2019
  • A composite guidance scheme is proposed for air-to-ground anti-tank missiles launched from an airborne platform. Long-range anti-tank missiles usually use a fiber optic line (FOL) for the datalink between an operator and the missile to obtain real-time target information and to command the missile. Also, impact angle control is used to maximize the warhead effectiveness, but it should be carefully implemented due to interference between the launch platform and the FOL. Thus, the proposed guidance scheme takes into account both impact angle and FOL constraints. Under system lag and acceleration limits, a selection method of guidance gains and calculation logic of the maximum achievable impact angle are proposed for a guideline of practical implementation. The performance of the proposed guidance scheme is investigated by nonlinear simulations with various engagement conditions.

Performance Comparison of 3-D Optimal Evasion against PN Guided Defense Missiles Using SQP and CEALM Optimization Methods (SQP와 CEALM 최적화 기법에 의한 대공 방어 유도탄에 대한 3차원 최적 회피 성능 비교)

  • Cho, Sung-Bong;Ryoo, Chang-Kyung;Tahk, Min-Jea
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.272-281
    • /
    • 2009
  • In this paper, three-dimensional optimal evasive maneuver patterns for air-to-surface attack missiles against proportionally navigated anti-air defense missiles were investigated. An interception error of the defense missile is produced by an evasive maneuver of the attack missile. It is assumed that the defense missiles are continuously launched during the flight of attack missile. The performance index to be minimized is then defined as the negative square integral of the interception errors. The direct parameter optimization technique based on SQP and a co-evolution method based on the augmented Lagrangian formulation are adopted to get the attack missile's optimal evasive maneuver patterns. The overall shape of the resultant optimal evasive maneuver is represented as a deformed barrel-roll.

Polynomial-time Greedy Algorithm for Anti-Air Missiles Assignment Problem (지대공 미사일 배정 문제의 다항시간 탐욕 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.185-191
    • /
    • 2019
  • During the modern battlefields of multi-batches flight formation attack situation, it is an essential task for a commander to make a proper fire distribution of air defense missile launch platforms for threat targets with effectively and quickly. Pan et al. try to solve this problem using genetic algorithm, but they are fails. This paper gets the initial feasible solution using high threat target first destroying strategy only use 75% available fire of each missile launch platform. Then, the assigned missile is moving to another target in the case of decreasing total threat. As a result of experiment, while the proposed algorithm is polynomial-time complexity greedy algorithm but this can be improve the solution than genetic algorithm.

U.S. Navy next generation Aegis Ships and AMDR(Air & Missile Defense Radar) (미 해군의 차기 이지스함과 AMDR)

  • Kim, Soo-hong;Kim, Young-ho;Park, Tae-yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.462-464
    • /
    • 2015
  • Since the first Aegis Cruiser USS Ticonderoga was constructed, Arleigh Burke class destroyers are being mass constructed as U.S. Naval capital surface ships and consistently improved the performance. In recent years, the newest aegis combat system, Baseline 9, was deployed. Aegis BMD, aegis ships which have BMD capability, is participated BMDS(Ballistic Missile Defense System) as a sea based BMD. And AN/SPY-1D will be replaced by AMDR(Air & Missile Defense Radar), advanced anti-air radar system to defend effectively against increased ballistic missiles threat from DDG-51 Flight III. In this paper, development status and technical characteristics of each type of aegis ships are researched and characteristics of AMDR are surveyed and described.

  • PDF

Aiming Point Correction Technique for Ship-launched Anti-air Missiles Considering Ship Weaving Motion (함정거동을 고려한 대공방어용 함정 탑재 요격탄 조준점 보정 기법)

  • Hong, Ju-Hyeon;Park, Sanghyuk;Park, Sang-Sup;Ryoo, Chang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.94-100
    • /
    • 2014
  • In order to intercept anti-ship missiles, it is important to accurately predict the aiming point. The major factor for degrading the accuracy of the aiming point is the motions of the warships due to waves. Therefore, a stage of correcting the aiming point is required to compensate for such motions of warships. The proposed aiming point correction technique treats the changes in positions and velocity of naval guns by considering changes in the positions and velocities of the anti-ship missiles. In this paper, a ship motion estimation filter was also constructed to predict the motions of warships at the firing time of naval guns. In the simulation part, finally, the distance errors before and after aiming point corrections were compared through 6-DOF simulations.