• Title/Summary/Keyword: Anti- Design

Search Result 1,172, Processing Time 0.033 seconds

Design of an Improved Anti-Collision Unit for an RFID Reader System Based on Gen2 (Gen2 리더 시스템의 개선된 충돌방지 유닛 설계)

  • Sim, Jae-Hee;Lee, Yong-Joo;Lee, Yong-Surk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2A
    • /
    • pp.177-183
    • /
    • 2009
  • In this paper, we propose an improved anti-collision algorithm. We have designed an anti-collision unit using this algorithm for the 18000-6 Type C Class 1 Generation 2 standard (Gen2). The Gen2 standard uses a Q-algorithm for incremental method on the Dynamic Slot-Aloha algorithm. It has basically enhanced performance over the Slot-Aloha algorithm. Unfortunately, there are several non-clarified parts: initial $Q_{fp}$ value, weighted C, and the ending point of the algorithm. If an incorrect value is selected, it causes degradation in performance. Thus we propose an improved anti-collision algorithm by clearly defining the vague parts of the existing algorithm. Simulation results showed an improved performance of up to 34.8% using an optimized value of C and the initial $Q_{fp}$ value. With the ending condition, performance is 34.7%. The anti-collision unit is designed using the Verilog HDL. The module was synthesized using Synopsys' Design Compiler and the TSMC $0.2{\mu}m$ standard cell library. The synthesized result yielded 3,847 gates, and was guaranteed under the proposed working frequency of 19.2MHz.

Development of Model for Structural Evaluation of Anti-Freezing Layer (동상방지층의 구조적 평가를 위한 모형 개발)

  • Lee, Moon-Sup;Heo, Tae-Young;Park, Hee-Mun;Kim, Boo-Il
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.25-32
    • /
    • 2012
  • The thickness of anti-freezing layer has been empirically determined using the frost depth obtained from the freezing index and has not been generally considered as a structural layer in pavement design procedure. In fact, the anti-freezing layer makes a role in structural layer and enables to reduce the total thickness of pavement system. The objective of this study is to develop the statistical regression model for evaluating the structural capacity of anti-freezing layer using Falling Weight Deflectormeter(FWD) test data in asphalt pavements. The FWD testing was conducted at the embankment, cutting, and boundary area of various test sections to estimate the structural capacity of anti-freezing layer in different foundation condition. It is observed from this testing that the center deflections of pavement structure with anti-freezing layer are smaller than those without anti-freezing layer ranging from 0.4 to 82.6%. To determine the variables of statistical model, the correlation study has been conducted between various FWD deflection indexes and the anti-freezing layer thickness. It is found that the ${\Delta}BDI$(%)(${\Delta}Basin$ Damage Index(%)) is highly correlated with anti-freezing layer thickness. The ${\Delta}BDI$(%) model were developed for evaluating structural capacity of anti-freezing layer using linear mixed-effect models.

Shape Optimal Design of Anti-Vibration Rubber Assembly to Reduce the Vibration of a Tractor Cabin (트랙터 캐빈의 진동저감을 위한 방진고무의 형상최적설계)

  • Choi, Hyo-Joon;Lee, Sang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.657-663
    • /
    • 2018
  • In this study, shape optimization was performed to improve the vibration isolation capability of an anti-vibration rubber assembly, which is used in the field option cabin of agricultural tractors. A uniaxial tension test and biaxial tension test were performed to characterize the hyper-elastic material properties of rubber, and the data were used to calibrate the material model used in the finite element analyses. A field test was performed to quantify the input excitation from the tractor and the output response at the cabin frame. To account for the nonlinear behavior of rubber, static analyses were performed and the load-displacement curve of rubber was derived. The stiffness of the rubber was calculated from this curve and input to the harmonic analyses of the cabin. The results were verified using the test data. Taguchi's parameter design method was used to find the optimal shape of the anti-vibration rubber assembly, which indicated a shape with reduced stiffness. The vibration of the cabin frame was reduced by the optimization by as much as 35% compared to the initial design.

An Establishment of Database for Effective Design of Anti-Frost Heave Layer using Field Data (도로포장의 효율적 동상방지층 설계를 위한 현장 계측자료의 데이터베이스(DB) 구축)

  • Kim, Nak-Seok;Nam, Young-Kug;Cho, Gyu-Tae;Lee, Bum-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.43-47
    • /
    • 2011
  • Korea has seasonal weathers which result in the frosting of soil in winter times, and the thawing of soil in spring. These climate characteristics result in the damaging of pavements, due to the repeated freezing and thawing of road pavements during winter and spring. In order to reduce these pavement damages, anti-frost heave layers are being specially installed, however it is being applied based on foreign researches, and therefore result in the waste of national budget. With this study, a database system was constructed for effective management and monitoring of measured temperatures and function data of 2 meters below the embankment, cut slope, and the cutting-embankment boundary, which are 15 regions picked by the frost index diagram. As the study result, an effective storage and management-purpose database was established for easy data searching and downloading for the pavement design engineers.

Design of Reduced Order H2 Controller;Application to Anti-Sway-Control of a Traveling Crane

  • Kodani, Nariyuki;Ouchi, Shigeto;Todaka, Yuji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1754-1757
    • /
    • 2004
  • For the anti-sway control of traveling cranes, there are several solutions, i.e., by fuzzy control, by optimal control theory, etc. Each of them is reported to be effective. And, H infinity control and $H_2$ control can be also used. However, the full order observer which estimates all states in the controlled object is used in these methods. Therefore, the orders of these controllers are apt to be higher than that of the optimal controller, etc. Because the conventional H2 controller which minimizes $H_2$ norm consists of two parts, that is: feedback gains which make the controlled object stable and the full order observer which estimate those states. If the minimal order observer is used instead of the full order one, the order of the controller can be reduced. In this paper, we propose a new method based on the minimalization of $H_2$ norm using the minimal order observer. And, we confirm the effect of a new $H_2$ controller in the experiments of the anti-sway control of a traveling crane.

  • PDF

A Study on Design of Anti-Sway Controller for ATC using Two Degree of Freedom PID Control

  • Sohn, Dong-Seop;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1327-1332
    • /
    • 2003
  • In this paper, an ATC(Automated Transfer Crane) control system is required rapid transportation to get highest productivity with low cost. Therefore, the container paths should be built in terms of the least time and least sway when container is transferred from the initial coordinate to the finial coordinate. So we applied the best-first search method for forming the container path, and calculated the anti-collision path for avoiding collision in its movement to the finial coordinate. And we constructed the neural network two degree of freedom PID (TDOFPID) controller to control the precise navigation. For simulation, we constructed the container profiles so that we analyzed the state of formed path and the performance of TDOFPID controller to the formatted path. Then we compared the performance of ES-tuned PID controller with our proposed controller in terms of trolley position, anti-sway, path change, disturbance, and the load of containers. The computer simulation results show that the proposed controller has better the other on the various conditions.

  • PDF