• 제목/요약/키워드: Anti venom activity

검색결과 35건 처리시간 0.025초

봉독약침(蜂毒藥鍼)의 항암효과(抗癌效果)에 대한 분자생물학적(分子生物學的) 연구(硏究) (Molecular Biological Study of Anti-cancer Effects of Bee Venom Aqua-acupuncture)

  • 박찬열;서정철;최도영;안병철
    • 대한약침학회지
    • /
    • 제3권1호
    • /
    • pp.1-19
    • /
    • 2000
  • To study anti-cancer effect and molecular biological mechanism of bee venom for aqua-acupuncture, the effects of bee venom on cell viability and apoptosis were analyzed using MTT assay, tryphan blue assay, $[^3H]$thymidine release assay, flow cytometric analysis, and activity of caspase-3 protease activity assay. To explore whether anti-cancer effects of bee venom are associated with the transcriptional control of gene expression, quantitative RT-PCR analysis of apoptosis-related genes was performed. The obtained results are summarized as follows: 1. The MTT assay demonstrated that cell viability was decreased by bee venom in a dose-dependant manner. 2. Significant induction of apoptosis was identified using tryphan blue assay, $[^3H]$thymidine release assay, and flow cytomet1 ric analysis of sub $G_1$ fraction. 3. In analysis of caspase-3 protease activity, the activity had increased significantly, in a dose-dependant manner. 4. Quantitative RT-PCR analysis of the apoptosis-related genes showed that Bcl-2 and Bcl-$X_L$ were down-regulated whereas Bax was up-regulated by bee venom treatment.

Antifungal Activity of Bee Venom and Sweet Bee Venom against Clinically Isolated Candida albicans

  • Lee, Seung-Bae
    • 대한약침학회지
    • /
    • 제19권1호
    • /
    • pp.45-50
    • /
    • 2016
  • Objectives: The purpose of this study was to investigate the antifungal effect of bee venom (BV) and sweet bee venom (SBV) against Candida albicans (C. albicans) clinical isolates. Methods: In this study, BV and SBV were examined for antifungal activities against the Korean Collection for Type Cultures (KCTC) strain and 10 clinical isolates of C. albicans. The disk diffusion method was used to measure the antifungal activity and minimum inhibitory concentration (MIC) assays were performed by using a broth microdilution method. Also, a killing curve assay was conducted to investigate the kinetics of the anti-fungal action. Results: BV and SBV showed antifungal activity against 10 clinical isolates of C. albicans that were cultured from blood and the vagina by using disk diffusion method. The MIC values obtained for clinical isolates by using the broth microdilution method varied from $62.5{\mu}g/mL$ to $125{\mu}g/mL$ for BV and from $15.63{\mu}g/mL$ to $62.5{\mu}g/mL$ for SBV. In the killing-curve assay, SBV behaved as amphotericin B, which was used as positive control, did. The antifungal efficacy of SBV was much higher than that of BV. Conclusion: BV and SBV showed antifungal activity against C. albicans clinical strains that were isolated from blood and the vagina. Especially, SBV might be a candidate for a new antifungal agent against C. albicans clinical isolates.

Inhibition of COX-2 Activity and Proinflammatory Cytokines($TNF-{\alpha}{\;}and{\;}IL-1{\beta}$) Production by Water-Soluble Sub-Fractionated Parts from Bee (Apis mellifera) Venom

  • Nam, Kung-Woo;Je, Kang-Hoon;Lee, Jang-Hurn;Han, Ho-Je;Lee, Hye-Jung;Kang, Sung-Kil;Mar, Woongchon
    • Archives of Pharmacal Research
    • /
    • 제26권5호
    • /
    • pp.383-388
    • /
    • 2003
  • Bee venom is used as a traditional medicine for treatment of arthritis. The anti-inflammatory activity of the n-hexane, ethyl acetate, and aqueous partitions from bee venom (Apis mellifera) was studied using cyclooxygenase (COX) activity and pro-inflammatory cytokines (TNF-$\alpha and IL-1\beta$) production, in vitro. COX-2 is involved in the production of prostaglandins that mediate pain and support the inflammatory process. The aqueous partition of bee venom showed strong dose-dependent inhibitory effects on COX-2 activity ($IC_{50} = 13.1 \mu$ g/mL), but did not inhibit COX-1 activity. The aqueous partition was subfractionated into three parts by molecular weight differences, namely, B-F1 (above 20 KDa), B-F2 (between 10 KDa and 20 KDa) and BF-3 (below 10 KDa). B-F2 and B-F3 strongly inhibited COX-2 activity and COX-2 mRNA expression in a dose-dependent manner, without revealing cytotoxic effects. TNF-$\alpha and IL-1\beta$ are potent pro-inflammatory cytokines and are early indicators of the inflammatory process. We also investigated the effects of three subfractions on TNF-$\alpha and IL-1\beta$ production using ELISA method. All three subfractions, B-F1, B-F2 and B-F3, inhibited TNF-$\alpha and IL-1\beta$production. These results suggest the pharmacological activities of bee venom on anti-inflammatory process include the inhibition of COX-2 expression and the blocking of pro-inflammatory cytokines (TNF-$\alpha and IL-1\beta$) production.

봉독요법(蜂毒療法)의 항염증(抗炎症) 기전(機轉) 연구(硏究)에 관(關)한 고찰(考察) (The Review on the Study related to Anti-inflammatory Mechanism of Bee Venom Therapy)

  • 최정식;박장우;오민석
    • 혜화의학회지
    • /
    • 제15권1호
    • /
    • pp.141-160
    • /
    • 2006
  • The obtained results are summarized as follows 1. New findings are reporting year by year as for the study related to Anti-inflammatory mechanism of Bee Venom therapy. 2. The Anti-inflammatory effect of Bee Venom therapy is achieved through counterirritation, stimulations to adrenal cortex, immuno-regulation, antioxidation, removal of free radicals, modulation of AGP gene induction. 3. The chief components of Bee Venom related to Anti-inflammatory effect are Melittin, MCD peptide, Apamin, Adolapin etc. 4. Melittin binds to secretory phospholipase A2 and inhibits its enzymatic activity. 5. Melittin blocks neutophil O2-production. 6. MCD peptide(Peptide 401) stimulates the mast cell secrets histamine, Anti-inflammatory effect caused by this is 'conterirritation'. 7. Melittin & Apamin have an anti-inflammatory effect by inducing cortisone secretion. 8. MCD peptide & Apamin increase immunologic fuction by stimulating hypophysis & adrenal cortex and have an anti-inflammatory effect by inhibiting synthesis of prostaglandin from arachidonic acid. 9. Adolapin have an anti-inflammatory effect by inhibiting COX. 10. Bee Venom have an anti-inflammatory effect by suppressing AGP($\alpha$-acid glycoprotein). 11. Bee Venom have an anti-inflammatory effect by inhibiting NO, iNOS, PLA2, COX-2, TNF-$\alpha$, IL-1, NF-${\kappa}B$, MAP kinase.

  • PDF

약침용봉독액(藥鍼用蜂毒液)이 흑색종세포(黑色腫細胞)에 미치는 항암효과(抗癌效果)에 대(對)한 분자생물학적(分子生物學的) 연구(硏究) (Molecular Biological Study of Anti-cancer Effects of Bee Venom on Human Melanoma Cell)

  • 박찬렬;남상수;김창환;이재동;강성길;이윤호;안병철
    • Journal of Acupuncture Research
    • /
    • 제17권2호
    • /
    • pp.169-186
    • /
    • 2000
  • To study anti-cancer effect and molecular biological mechanism of bee venom for aqua-acupuncture, the effects of bee venom on cell viability, apoptosis, and cell cycle were analyzed using MTT assay, tryphan blue assay, [3H]thymidine release assay, flow cytometric analysis, activity of caspase-3 protease activity assay, and immunocytometric analysis of PCNA. To explore whether anti-cancer effects of bee venom are associated with the transcriptional control of gene expression, quantitative RT-PCR analysis of apoptosis- and cell cycle-related genes was performed. The obtained results are summarized as follows: 1. The MTT assay demonstrated that cell viability was decreased by bee venom in a dose-dependant manner. 2. Significant induction of apoptosis was identified using tryphan blue assay, [$^3H$]thymidine release assay, and flow cytometric analysis of sub $G_1$ fraction. 3. In analysis of caspase-3 protease activity, the activity had increased significantly, in a dose-dependant manner. 4. Quantitative RT-PCR analysis of the apoptosis-related genes showed that Bcl-2 and $Bcl-X_L$ were down-regulated whereas Bax was up-regulated by bee venom treatment. 5. In flow cytometric analysis of cell cycle and immunocytometric analysis of PCNA expression, cell numbers of $G_1$ phase was increased by a dose-dependant manner. 6. In quantitative RT-PCR analysis of the cell cycle-related genes, p21, p27, and p57 were increased, while Cyclin D1, CDK4, c-Myc, c-Fos, and Histone H3 were decreased. In contrast, there were no remarkable changes in expression levels of CDC2 and c-Jun.

  • PDF

인체폐암세포에서 봉독에 의한 prostagladin E2 생성 및 telomerase 활성 저하 (Bee Venom-induced Growth Inhibition of Human Lung Cancer Cells was Associated with Inhibition of Prostagladin E2 Production and Telomerase Activity.)

  • 김종환;황원덕;김병우;최영현
    • 생명과학회지
    • /
    • 제19권4호
    • /
    • pp.502-507
    • /
    • 2009
  • 본 연구에서는 봉독의 처리에 따른 A549 폐암세포의 증식억제에서 $PGE_2$ 생성 및 telomerase 활성의 변화 관련성을 조사하였다. A549 세포의 증식은 봉독 처리에 의하여 유의적으로 감소되었으며, 이는 apoptosis 유발과 연관성이 있음을 알 수 있었다. 봉독 처리 농도의 증가에 따라 COX-2의 발현이 전사 및 번역 수준에서 모두 감소되었으며 이에 따른 $PGE_2$의 생성이 현저하게 감소되었으나, COX-1의 발현에는 큰 변화가 없었다. 또한 봉독 처리에 따라 telomere 조절인자들 중, hTERT, hTR 및 c-myc의 발현이 억제되었으며, telomerase의 활성도 매우 감소되었다. 본 연구의 결과는 $PGE_2$ 생성과 telomerase 활성 저하가 봉독의 항암 작용 표적인자로서 작용될 수 있음을 보여준다.

Evaluation of Anti-venom effect of Tiryaq-e-arba in rabbit models

  • Ahsan, Mohd. Tarique;Rani, Seema
    • 셀메드
    • /
    • 제10권4호
    • /
    • pp.30.1-30.4
    • /
    • 2020
  • Background: Tiryaq-e-arba is a polyherbal Unani antidote/antivenom formulation used in the management of poisoning due to snake bite, scorpion bite as well as in cold poisons since time immemorial. Objectives: Tiryaq-e-arba was not evaluated scientifically before this study carried out, therefore it was studied for antivenom activity by testing on plasma fibrinogen level in Russell's Viper envenomation in rabbits. Material &Methods: The anti-venom activity of the test drug was studied by observing its effect on plasma fibrinogen level in Russell's Viper envenomation in rabbits by the method of Netelson. Results: The plasma fibrinogen level was found to be 171±665.04 mg/100 ml of blood, 36.18±1.12 mg/100 ml of blood, 33.14±0.52 mg/100 ml of blood and 17.9±1.65 mg/100 ml of blood at 0, 1, 3 and 6 hours respectively in control animals while in the test animal it was found to be 157.13±3.44 mg/100 ml of blood, 41.13±2.69 mg/100 ml of blood, 62.09±1.65 mg/100 ml of blood and 54.39±0.73 mg/100 ml of blood respectively. The test showed that though the plasma fibrinogen level in the test lower at 0 hour but it was greater in the control animals at 1, 3 and 6 hours. The increase in plasma fibrinogen level in the test animals at 3 and 6 hours was statistically significant (P<0.001). Conclusions: The finding of the present study was that Tiryaq-e-arba possesses antivenom activity which scientifically support the Unani claim that it is Dafe-Sumoom-al-Hevan (Antivenom or Antidote) and the use of this preparation in corresponding diseases.

봉독약침(蜂毒藥鍼)이 C57BL mouse의 흑색종(黑色腫)에 미치는 영향 (The Effects of Bee Venom Therapy on Melanoma of C57BL Mouse)

  • 오기남;이재동;박동석
    • Journal of Acupuncture Research
    • /
    • 제19권2호
    • /
    • pp.78-91
    • /
    • 2002
  • Objective : This study was designed to investigate the anti-cancer effects of bee venom on melanoma in C57BL mice. Materials and Methods : For the induction of melanoma, C57BL mice were treated by DMBA(7, 12-dimethylbenz[a]anthracene). Each group of C57BL mouse was treated with DMBA $50{\mu}g$, $75{\mu}g$, $100{\mu}g$ respectively once a week for 15 weeks. Tumor generation in each group of 10 mice was observed. Cumulative curves were showed in the density and frequency of skin tumor generation. To know the effects of pre-treatment of bee venom on tumor generation by DMBA treatment(frequency of tumor generation), Each group of C57BL mouse was pretreated and treated with bee venom $5{\mu}{\ell}$, $25{\mu}{\ell}$, $50{\mu}{\ell}$ respectively once a week for 3 weeks, whereafter each mouse was treated with DMBA $100{\mu}g$ once a week for 15 weeks. Results and Conclusion (1) There was chemotherapeutic effect, but not chemopreventive effect. (2) Cpp32 activity was increased by $50{\mu}{\ell}$ bee venom treatment. (3) Bee venom treatment inhibited expression of cell-cycle regulating, growth-promoting genes such as c-Jun, c-Fos, and Cyclin Dl, and increased tumor suppressors p53 and p21/Wafl. (4) Bee venom treatment activated expression of a representative apoptosis-inducing gene Bax.

  • PDF

Bee Venom (Apis Mellifera) an Effective Potential Alternative to Gentamicin for Specific Bacteria Strains - Bee Venom an Effective Potential for Bacteria-

  • Zolfagharian, Hossein;Mohajeri, Mohammad;Babaie, Mahdi
    • 대한약침학회지
    • /
    • 제19권3호
    • /
    • pp.225-230
    • /
    • 2016
  • Objectives: Mellitine, a major component of bee venom (BV, Apis mellifera), is more active against gram positive than gram negative bacteria. Moreover, BV has been reported to have multiple effects, including antibacterial, antivirus, and anti-inflammation effects, in various types of cells. In addition, wasp venom has been reported to have antibacterial properties. The aim of this study was to evaluate the antibacterial activity of BV against selected gram positive and gram negative bacterial strains of medical importance. Methods: This investigation was set up to evaluate the antibacterial activity of BV against six grams positive and gram negative bacteria, including Staphylococcus aureus (S. aureus), Salmonella typhimurium, Escherichia coli (E. coli) O157:H7, Pseudomonas aeruginosa, Burkholderia mallei and Burkholderia pseudomallei. Three concentrations of crude BV and standard antibiotic (gentamicin) disks as positive controls were tested by using the disc diffusion method. Results: BV was found to have a significant antibacterial effect against E. coli, S. aureus, and Salmonella typhyimurium in all three concentrations tested. However, BV had no noticeable effect on other tested bacteria for any of the three doses tested. Conclusion: The results of the current study indicate that BV inhibits the growth and survival of bacterial strains and that BV can be used as a complementary antimicrobial agent against pathogenic bacteria. BV lacked the effective proteins necessary for it to exhibit antibacterial activity for some specific strains while being very effective against other specific strains. Thus, one may conclude, that Apis mellifera venom may have a specific mechanism that allows it to have an antibacterial effect on certain susceptible bacteria, but that mechanism is not well understood.

Enhanced Anti-Cancer Effect of Snake Venom Activated NK Cells on Lung Cancer Cells by Inactivation of NF-κB

  • Kollipara, Pushpa Saranya;Won, Do Hee;Hwang, Chul Ju;Jung, Yu Yeon;Yoon, Heui Seoung;Park, Mi Hee;Song, Min Jong;Song, Ho Sueb;Hong, Jin Tae
    • Biomolecules & Therapeutics
    • /
    • 제22권2호
    • /
    • pp.106-113
    • /
    • 2014
  • In the present study, we investigated anti-cancer effect of snake venom activated NK cells (NK-92MI) in lung cancer cell lines. We used snake venom ($4{\mu}g/ml$) treated NK-92MI cells to co-culture with lung cancer cells. There was a further decrease in cancer cell growth up to 65% and 70% in A549 and NCI-H460 cell lines respectively, whereas 30-40% was decreased in cancer cell growth by snake venom or NK-92MI alone treatment. We further found that the expression of various apoptotic proteins such as that Bax, and cleaved caspase-3 as well as the expression of various death receptor proteins like DR3, DR4 and Fas was also further increased. Moreover, consistent with cancer cell growth inhibition, the DNA binding activity of NF-${\kappa}B$ was also further inhibited after treatment of snake venom activated NK-92MI cells. Thus, the present data showed that activated NK cells could further inhibit lung cancer cell growth.