• 제목/요약/키워드: Anti fuzzy ideal

검색결과 7건 처리시간 0.02초

ON ANTI FUZZY PRIME IDEALS IN BCK-ALGEBRAS

  • Jeong, Won Kyun
    • 충청수학회지
    • /
    • 제12권1호
    • /
    • pp.15-21
    • /
    • 1999
  • In this paper, we introduce the notion of anti fuzzy prime ideals in a commutative BCK-algebra and obtain some properties of it.

  • PDF

FUZZY IDEALS IN Γ-BCK-ALGEBRAS

  • Arsham Borumand Saeid;M. Murali Krishna Rao;Rajendra Kumar Kona
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제30권4호
    • /
    • pp.429-442
    • /
    • 2023
  • In this paper, we introduce the concept of fuzzy ideals, anti-fuzzy ideals of Γ-BCK-algebras. We study the properties of fuzzy ideals, anti-fuzzy ideals of Γ-BCK-algebras. We prove that if f-1(µ) is a fuzzy ideal of M, then µ is a fuzzy ideal of N, where f : M → N is an epimorphism of Γ-BCK-algebras M and N.

(inf,sup)-HESITANT FUZZY BI-IDEALS OF SEMIGROUPS

  • PONGPUN JULATHA;AIYARED IAMPAN
    • Journal of applied mathematics & informatics
    • /
    • 제41권2호
    • /
    • pp.413-437
    • /
    • 2023
  • In this paper, we introduce the concepts of (inf, sup)-hesitant fuzzy subsemigroups and (inf, sup)-hesitant fuzzy (generalized) bi-ideals of semigroups, and investigate their properties. The concepts are established in terms of sets, fuzzy sets, negative fuzzy sets, interval-valued fuzzy sets, Pythagorean fuzzy sets, hesitant fuzzy sets, and bipolar fuzzy sets. Moreover, some characterizations of bi-ideals, fuzzy bi-ideals, anti-fuzzy bi-ideals, negative fuzzy bi-ideals, Pythagorean fuzzy bi-ideals, and bipolar fuzzy bi-ideals of semigroups are given in terms of the (inf, sup)-type of hesitant fuzzy sets. Also, we characterize a semigroup which is completely regular, a group and a semilattice of groups by (inf, sup)-hesitant fuzzy bi-ideals.

EXISTENCE OF FUZZY IDEALS WITH ADDITIONAL CONDITIONS IN BCK/BCI-ALGEBRAS

  • Jun, Young-Bae;Park, Chul-Hwan
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제14권3호
    • /
    • pp.223-230
    • /
    • 2007
  • We give an answer to the following question: Question. Let S be a subset of [0,1] containing a maximal element m > 0 and let C :=$\{I_{t}\;{\mid}\;t{\in}S\}$ be a decreasing chain of ideals of a BCK/BCI-algebra X. Then does there exists a fuzzy ideal ${\mu}(X)=S\;and\;C_{\mu}=C?$.

  • PDF

FUZZY SEMIGROUPS IN REDUCTIVE SEMIGROUPS

  • Chon, Inheung
    • Korean Journal of Mathematics
    • /
    • 제21권2호
    • /
    • pp.171-180
    • /
    • 2013
  • We consider a fuzzy semigroup S in a right (or left) reductive semigroup X such that $S(k)=1$ for some $k{\in}X$ and find a faithful representation (or anti-representation) of S by transformations of S. Also we show that a fuzzy semigroup S in a weakly reductive semigroup X such that $S(k)=1$ for some $k{\in}X$ is isomorphic to the semigroup consisting of all pairs of inner right and left translations of S and that S can be embedded into the semigroup consisting of all pairs of linked right and left translations of S with the property that S is an ideal of the semigroup.