• Title/Summary/Keyword: Anti estrogenic activity

Search Result 30, Processing Time 0.033 seconds

The effects of estradiol and its metabolites on the regulation of CYP1A1 expression.

  • Euno, Joung-Ki;Yhong, Sheen-Yhun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2002.10a
    • /
    • pp.170-170
    • /
    • 2002
  • College of Pharmacy, Ewha womans University, Seoul, 120-750, Korea 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the most potent halogenated aromatic hydrocarbon congener that induces expression of several genes including CYP1A1. Exposure to TCDD results in many toxic actions such as carcinogenesis, hepatotoxicity, immune suppression, and reproductive and developmental toxicity. Dramatic differences in dioxin toxicity have been observed between the sexes of some animal species, suggesting hormonal modulation of dioxin action. Many studies have been reported and propose several mechanisms of anti-estrogenic effects of TCDD. In contrast, the effect of estrogen on the regulation of CYP1A1 are not clear at present. There are several reports showing conflicting results. It seems that induction/inhibition of CYP1A1 may be dependent on cell-type and concentration. The purpose of this study was to investigate the regulation of TCDD-induced CYP1A1 gene expression by estradiol and its metabolites. We examined whether estradiol and its metabolites altered TCDD-mediated induction of CYP1A1 enzyme activity. 17 ${\beta}$ estradiol and 16 ${\alpha}$ estriol at non cytotoxic concentrations caused a significant concentration dependent decline of TCDD-induced EROD activity To determine whether reduced EROD activity reflected altered CYP1A1 mRNA expression, we measured CYP1A1 mRNA level by RT-PCR. And to examine whether estradiol and its metabolites have effects on TCDD-induced CYP1A1 gene expression at the transcription level, we also peformed transient transfection with an AhR responsive reporter plasmid containing the 5' flanking region of the human CYP1A1 gene to examine whether estradiol and its metabolites have effects on TCDD-induced CYP1A1 gene expression at the transcription level.

  • PDF

Anti-climacterium Effects of Gagamguibiondam-tang in Ovariectomized Rats (난소적출로 유발된 랫트 갱년기 장애에 대한 가감귀비온담탕의 생리활성 효과 평가)

  • Han, Sang-Gyeom;Kim, Dong-Chul
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.30 no.4
    • /
    • pp.18-44
    • /
    • 2017
  • Purpose: The object of this study was to observe the anti-climacterium activity of Gagamguibiondam-tang (GGOT) on ovariectomized (OVX) rats, a well-documented rodent models resembles with women postmenopausal climacterium symptoms, as including cardiovascular diseases, obesity, hyperlipidemia, osteoporosis, organ steatosis and mental disorders. Methods: In this study, anti-climacteric effects were evaluated separated into three categories; 1) anti-obese, 2) anti-uterine atrophy and 3) anti-osteoporotic effects. Five groups were used (8 rats in each group); sham control, OVX control, GGOT 500, 250 and 125 mg/kg administered groups. Twenty-eight days after bilateral OVX surgery, GGOT were orally administered, once a day for 84 days, and then the changes on the body weight and gain during experimental periods, serum estradiol levels, abdominal fat pad and uterus weights with histopathology of abdominal fat pads (total thickness and mean adipocyte diameters) and uterus (total, epithelial and mucosal thickness, percentages of uterine gland regions) for anti-obese and estrogenic effects. In addition, femur, tibia and fourth or fifth lumbar vertebrae (L4 or L5) wet, dry and ash weights, mineral density (BMD), bone strength (failure load), serum osteocalcin and bone specific alkaline phosphatase (bALP) contents, histological and histomorphometrical analyses - bone mass and structure with bone resorption, were monitored for anti-osteoporosis activity. Results: As a result of OVX, noticeable increases of body weight and gains, food and water consumption, weights of abdominal fat pad deposited in dorsal abdominal cavity, serum osteocalcin levels were demonstrated in this experiment with decrease of uterus, femur, tibia and L5 weights, serum bALP and estradiol levels. In addition, marked hypertrophic changes of adipocytes located in deposited abdominal fat pads, uterine disused atrophic changes, decreases of bone mass and structures of femur, tibia and L4 were also observed in OVX control rats with dramatic increases of bone resorption markers, the Ocn and OS/BS at histopathological and histomorphometrical analysis in this study as compared with sham-operated control rats, suggesting the estrogen-deficient climacterium symptoms - obese and osteoporosis were induced by OVX, respectively. However, these estrogen-deficient climacterium symptoms induced by bilateral OVX in rats were significantly inhibited by 84 days of continuous oral treatment of GGOT 500, 250 and 125 mg/kg, respectively. Especially, GGOT 500, 250 and 125 mg/kg showed clear dose-dependent inhibitory activities on the OVX-induced climacterium signs. Conclusion: The results suggest that oral administration of GGOT 500, 250 and 125 mg/kg has clear dose-dependent favorable anti-climacterium effects - estrogenic, anti-obese and anti-osteoporotic activities in OVX rats in this experiment.

Anti-Proliferative Activity of Naturally Occurring Flavonoids on Cultured Human Tumor Cell Lines (천연 유리 Flavonoid 화합물들의 암세포성장 저해효과)

  • Kim, Jung-Sook;Choi, Yeon-Hee;Seo, Jee-Hee;Lee, Jung-Won;Kim, Seong-Kie;Choi, Sang-Un;Kang, Jong-Seong;Kim, Young-Kyoon;Kim, Sung-Hoon;Kim, Young-Sup;Ryu, Shi-Yong
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.2 s.137
    • /
    • pp.164-170
    • /
    • 2004
  • The flavonoids are a very large and important group of polyphenolic natural products, which are united by their derivatization from the heterocycle, flavone. They are distributed in higher plants and occur widely in the fruits and vegetables that make up the human diet. They exhibit a wide range of biological properties, including antitumor, antiinflammatory, hepatoprotective, antimicrobial, insecticidal and estrogenic activities. They are also major components of many plant drugs and it is possible that they contribute to the curative properties. For the purpose of developing anticancer agent of natural origin, we have evaluated forty four kinds of naturally occurring flavonoids for the inhibitory activity upon the proliferation of cultured human tumor cells such as A549 (non small cell lung), SK-OV-3 (ovary), SK-MEL-2 (melanoma), XF498 (central nerve system) and HCT-15 (colon) in vitro.

Effects of Puerariae Radix extract on Cisplatin-Induced Apoptosis of Rat Mesangial Cells (갈근(葛根) 추출물이 cisplatin에 의해 유도된 rat mesangial cell의 apoptosis에 미치는 영향)

  • Hong, Jae-Eui;Shin, Jo-Young;Ju, Sung-Min;Jeon, Byung-Hun;Lee, Si-Hyeong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.2
    • /
    • pp.220-227
    • /
    • 2010
  • Puerariae radix (PR) is a popular natural herb and a traditional food in Asia, which has antithrombotic and anti-allergic properties and stimulates estrogenic activity. One of the major side effects of cisplatin is nephrotoxicity, leading to acute renal failure. Recent study has suggested a role of ROS and p53 in renal cell injury by cisplatin. We studied that protective effects of PR on cisplatin-induced apoptosis in rat mesangial cell. Rat mesangial cell was preincubated with PR (50, 100, 150 and 200 ${\mu}g/m{\ell}$) for 12 hr and then treated with 30 ${\mu}M$ cisplatin for 24 hr. Protective effect of PR on cisplatin-induced apoptosis in ECV304 cells was determined using MTT assay, FDA-PI staining, flow cytometric analysis, caspase-3 activity assay, ROS assay and western blot. Our results showed that PR inhibited in cisplatin-induced apoptosis and ROS production in ECV304 cells. Moreover, PR reduced ERK, p38 and JNK activation that increased in cisplatin-treated rat mesangial cell. Furthermore, activation of p53 by cisplatin in rat mesangial cell was inhibited by PR treatment. These results suggest that protective effect of PR on cisplatin-induced apoptosis in rat mesangial cell may be associated with reduction of ERK, p38, JNK, p53 activation.

The anti-climacterium effects of red clover dry extracts combined with pomegranate concentration powder in ovariectomized rats

  • Kim, Kyung Hu;Kang, Su Jin;Choi, Beom Rak;Kim, Seung Hee;Yi, Hae Yeon;Kim, Dong Chul;Choi, Seong Hun;Han, Chang Hyun;Park, Soo Jin;Song, Chang Hyun;Ku, Sae Kwang;Lee, Young Joon
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.133-145
    • /
    • 2014
  • Objective : In this study, the addition of dried pomegranate concentrate powder (PCP) was affected the anti-climacterium activity of red clover dry extracts (RC) in ovariectomized (OVX) rats. Materials and methods : After bilateral OVX surgery, RC 40 mg/kg, PCP 20 mg/kg and RC:PCP 2:1 mixture (g/g) 120, 60 and 30 mg/kg (of body weight) were orally administered, once a day for 84 days, and then the changes on the serum estradiol levels, abdominal fat pad and uterus weights were observed for estrogenic effects. In addition, liver weights, serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were also evaluated for hepatoprotective effects, and serum total cholesterol (TC), low density lipoprotein (LDL), high density lipoprotein (HDL) and triglyceride (TG) levels were monitored for hypolipidemic effects. Results : As a result of OVX, the estrogen-deficient climacterium symptoms, increments of abdominal fat pad weights, serum AST, ALT, TC, LDL and TG levels with decrease of uterus and liver weights, serum estradiol levels, were demonstrated. However, these estrogen-deficient climacterium symptoms induced by bilateral OVX in rats were significantly inhibited by continuous oral treatment of RC 40 mg/kg, PCP 20 mg/kg and RC:PCP 2:1 mixture (g/g) 120, 60 and 30 mg/kg, respectively. Conclusion : The results suggested that RC:PCP 2:1 mixtures synergistically increased the anti-climacterium effects of RC in OVX rats. It, therefore, is expected that RC:PCP 2:1 mixture will be promising as a new potent protective agents for relieving the climacterium symptoms.

20(S)- Protopanaxadiol suppresses hepatic stellate cell activation via WIF1 demethylation-mediated inactivation of the Wnt/β-catenin pathway

  • Chunxue Li ;Yating Zhan ;Rongrong Zhang;Qiqi Tao ;Zhichao Lang ;Jianjian Zheng
    • Journal of Ginseng Research
    • /
    • v.47 no.4
    • /
    • pp.515-523
    • /
    • 2023
  • Background: 20(S)-protopanaxadiol (PPD), one of the main components of ginseng, has anti-inflammatory, anti-estrogenic, and anti-tumor activities. It is known that activated hepatic stellate cells (HSCs) are the primary producers of extracellular matrix (ECM) in the liver, and the Wnt/β-catenin pathway participates in the activation of HSCs. We aimed to explore whether PPD inhibits liver fibrosis is associated with the Wnt/β-catenin pathway inactivation. Methods: The anti-fibrotic roles of PPD were examined both in vitro and in vivo. We also examined the levels of Wnt inhibitory factor 1 (WIF1), DNA methyltransferase 1 (DNMT1) and WIF1 methylation. Results: PPD obviously ameliorated liver fibrosis in carbon tetrachloride (CCl4)-treated mice and reduced collagen deposition. PPD also suppressed the activation and proliferation of primary HSCs. Notably, PPD inhibited the Wnt/β-catenin pathway, reduced TCF activity, and increased P-β-catenin and GSK-3β levels. Interestingly, WIF1 was found to mediate the inactivation of the Wnt/β-catenin pathway in PPD-treated HSCs. WIF1 silencing suppressed the inhibitory effects of PPD on HSC activation and also restored α-SMA and type I collagen levels. The downregulation of WIF1 expression was associated with the methylation of its promoter. PPD induced WIF1 demethylation and restored WIF1 expression. Further experiments confirmed that DNMT1 overexpression blocked the effects of PPD on WIF1 expression and demethylation and enhanced HSC activation. Conclusion: PPD up-regulates WIF1 levels and impairs Wnt/β-catenin pathway activation via the downregulation of DNMT1-mediated WIF1 methylation, leading to HSC inactivation. Therefore, PPD may be a promising therapeutic drug for patients with liver fibrosis.

Effect of Soy Isoflavones on the Expression of $TGF-{\beta}1$ and Its Receptors in Cultured Human Breast Cancer Cell Lines

  • Kim Young-Hwa;Jin Kyong-Suk;Lee Yong-Woo
    • Biomedical Science Letters
    • /
    • v.11 no.2
    • /
    • pp.175-183
    • /
    • 2005
  • The two major isoflavones in soy, genistein and daidzein, are well known to prevent hormone-dependent cancers by their anti estrogenic activity. The exact molecular mechanisms for the protective action are, however, not provided yet. It has been reported that genistein and daidzein have a potential anticancer activity through their antiproliferative effect in many hormone-dependent cancer cell lines. Transforming growth $factor-\beta1(TGF-\beta1)$ has also been found to have cell growth inhibitory effect, especially in mammary epithelial cells. This knowledge led to a hypothetical mechanism that the soy isoflavones-induced growth inhibitory effect can be derived from the regulation of $TGF-\beta1$ and $TGF-\beta$ receptors. In order to test this hypothesis, the effects of the soy isoflavones at various concentrations and periods on the expression of $TGF-\beta1$and $TGF-\beta$ receptors were investigated by using Northern blot analysis in human breast carcinoma epithelial cell lines, an estrogen receptor positive cell line (MCF-7) and an estrogen receptor negative cell line (MDA-MB-231). As a result, only genistein has shown a profound dose-dependent effect on $TGF-\beta1$ expression in the $ER^+$ cell line within the range of doses tested, and the expression levels are correspondent to their inhibitory activities of cell growth. Moreover, daidzein showed down-regulated $TGF-\beta1$ expression at a low dose, the cell growth proliferation was promoted at the same condition. Therefore, antiproliferative activity of the soy isoflavones can be mediated by $TGF-\beta1$ expression, and the effects are mainly, if not all, occurred by ER dependent pathway. The expression of $TGF-\beta$ receptors was induced at a lower dose than the one for $TGF-{\beta}1$ induction regardless of the presence of ER, and the expression patterns are similar to those of the cell growth inhibition. These results indicated that the regulation of $TGF-\beta$ receptor expression as well, prior to $TGF-\beta1$ expression, may be involved in the antiproliferative activity of soy isoflavones. Little or no expression of $TGF-\beta$ receptors was found in the MCF-7 and MDA-MB-231 cells, suggesting refractory properties of the cells to growth inhibitory effect of the $TGF-\beta$. The soy isoflavones can seemingly restore the sensitivity of growth inhibitory responses to $TGF-\beta1$ by re-inducing $TGF-\beta$ receptors expression. In conclusions, our findings presented in this study show that the antitumorigenic activity of the soy isoflavones could be mediated by not only $TGF-\beta1$induction but $TGF-\beta$ receptor restoration. Thus, soy isoflavones could be good model molecules to develop new nonsteroidal antiestrogenic chemopreventive agents, associated with, regulation of $TGF-\beta$ and its receptors.

  • PDF

Biphasic Effects of the Flavonoids Quercetin and Naringenin on the Metabolic Activation of 2-Amino-3,5-dimethylimidazo[4,5-F]quinoline by Salmonella Typhimurium TA1538 Coexpressing Human Cytochrome P450 1A2, NADPH-Cytochrome P450 Reductase, and Cytochrome $b_5$

  • Kang, Il-Hyun;kim, Hyun-Jung;Oh, Hyeyoung;Park, Young-In;Dong, Mi-Sook
    • Environmental Mutagens and Carcinogens
    • /
    • v.23 no.3
    • /
    • pp.94-98
    • /
    • 2003
  • Quercetin and naringenin are representative flavonoids that not only exert anti estrogenic, cholesterol-lowering and antioxidant activities but also can modulate the metabolism of many xenobiotics. The activity of the specific form(s) of CYP450 is likely to be a major determinant of susceptibility to chemically induced carcinogenesis between which varies among between individuals due to different dietary habits as well as genetic characteristics. People consume cooked meat or fish together with various vegetables containing substantial amounts of quercetin and naringenin that can modify the enzyme activity of CYP1A2 to stimulate or to inhibit the mutagenic activities of HCAs. Heterocyclic amines (HCAs) produced by cooking meat products at high temperatures are promutagens that are activated by cytochrome P450 (CYP) lA2. Using a newly developed Salmonella typhimurium TA1538/1A2bc-b5 strain, we tested the effect of quercetin and naringenin on the mutagenicity of 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ). TA1538/1A2bc-b5 bears two plasmids, one expressing human CYP1A2 and NADPH-P450 reductase (NPR), and the other plasmid which expresses human cytochrome b5 (cyp b5). TA1538/1A2bc-b5 cells showed high activities of 7-ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-demethylase (MROD) associated with CYP1A2 and are very sensitive to mutagenesis induced by several HCAs. MeIQ was found to be the strongest mutagen among the HCAs tested in this system. Mutagenicity of MeIQ was enhanced 50 and 42% by quercetin at 0.1 and 1 mM, respectively, but suppressed 82% and 96% at 50 mM and 100 mM. Naringenin also increased the MeIQ-induced mutation about 37% and 22% at 0.1 and 1 mM, but suppressed it 32% and 63% at 50 mM and 100 mM concentrations, respectively, in TA 1538/1A2bc-b5 cells. Thus, they stimulated the MeIQ induced mutation at low concentrations, but strongly suppressed it at high concentrations. This biphasic effect of flavonoids was due to the stimulation or the inhibition of CYP1A2 activity in a dose-dependent manner judging by the activities of EROD or MROD in the Salmonella cells. Collectively, it is likely that the biphasic effects of quercetin and naringenin on the MeIQ-induced mutagenesis in S. typhimurium TA1538/CYP1A2bc-b5 were due to their differential modification of the CYP1A2 activity in these cells.

  • PDF

Evaluation of the Anti-oxidant Activity of Pueraria Extract Fermented by Lactobacillus rhamnosus BHN-LAB 76 (Lactobacillus rhamnosus BHN-LAB 76에 의한 Pueraria 발효 추출물의 항산화 활성 평가)

  • Kim, Byung-Hyuk;Jang, Jong-Ok;Lee, Jun-Hyeong;Park, Ye-Eun;Kim, Jung-Gyu;Yoon, Yeo-Cho;Jeong, Su Jin;Kwon, Gi-Seok;Lee, Jung-Bok
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.545-554
    • /
    • 2019
  • The phytochemical compounds of Pueraria, a medicinally important leguminous plant, include various isoflavones that have weak estrogenic activity and a potential role in preventing chronic disease, cancer, osteoporosis, and postmenopausal syndrome. However, the major isoflavones are derivatives of puerarin and occur mainly as unabsorbable and biologically inactive glycosides. The bioavailability of the glucosides can be increased by hydrolysis of the sugar moiety using ${\beta}$-glucosidase. In this study, we investigated the antioxidant effects of a Pueraria extract after fermentation by Lactobacillus rhamnosus BHN-LAB 76. The L. rhamnosus BHN-LAB 76 strain was inoculated into Pueraria powder and fermented at $37^{\circ}C$ for 72 hr. The total polyphenol content of the Pueraria extract increased by about 134% and the total flavonoid content increased around 110% after fermentation with L. rhamnosus BHN-LAB 76 when compared to a non-fermented Pueraria extract. Superoxide dismutase-like activities, DPPH radical scavenging, and ABTS radical scavenging increased by approximately 213%, 190%, and 107%, respectively, in the fermented Pueraria extract compared to the non-fermented Pueraria extract. Fermentation of Pueraria extracts with L. rhamnosus BHN-LAB 76 is therefore possible and can effectively increase the antioxidant effects. These results can be applied to the development of improved foods and cosmetic materials.

Effects of Bisphenol and Octylphenol on TM3 Cell : Expression of Cytochrome P450scc and Estrogen Receptor $\alpha$ mRNA (Bisphenol과 Octylphenol이 TM3 세포에 미치는 영향: Cytochrome P450scc와 Estrogen Receptor $\alpha$ 유전자의 발현)

  • 이호준;김묘경;강희규;김동훈;한성원;고덕성
    • Development and Reproduction
    • /
    • v.4 no.2
    • /
    • pp.215-220
    • /
    • 2000
  • Most of endocrine disrupters (EDs) have been reported to exhibit estrogenic or anti-androgenic activity and thereby may disrupt reproductive development in human or wildlife. This study was performed to investigate the effects of estrogen (E$_2$), bisphenol (BP) and octylphenol (OP) on the mouse Leydig cell line (TM3). TM3 originated from testis of 11~13-daly-old BALB/c nu/+ mice was cultured in DMEM supplemented with 10% FBS alone or medium with estrogen (E$_2$), bisphenol (BP) and octylphenol (OP; 1 pM, 1 nM, 1 $\mu$M, 1 mM, respectively) for 48 hours. After culture, total cell number and viability were assessed by heamocyto-meter and trypan blue stain. Expression of cytochrome P450scc (CYPscc) mRNA whose product is involved in steroid hormone biosynthesis and estrogen receptor $\alpha$(ER $\alpha$) mRNA were detected by RT-PCR. As a result, treatment of TM3 with E$_2$, BP and OP(1 mM, respectively) significantly decreased the viability but not all of groups as high as 1 $\mu$M. Exposure of TM3 to OP significantly reduced the total cell number but not E$_2$ or BP. The expression of CYPscc mRNA was slightly reduced in BP (1 nM, 1 $\mu$M) and significantly decreased in OP (1 nM, 1 $\mu$M) treated TM3, except E$_2$ group. But the expression of ER $\alpha$ mRNA was sightly increased in all treated groups. In conclusion, BP and OP (high concentration) might inhibit steroidogenesis by decreasing the CYPscc mRNA expression in the mouse testis. These results suggest that BP and OP might impair spermatogenesis and subsequently disturb testicular function.

  • PDF